class: title-slide # Who wants to be a Bayesian? (and why you should...) ## Gianluca Baio ### [Department of Statistical Science](https://www.ucl.ac.uk/statistics/) | University College London .title-small[ <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#00acee;height:0.8em;"> [ comment ] <path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"></path></svg> [g.baio@ucl.ac.uk](mailto:g.baio@ucl.ac.uk) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#EA7600;height:0.8em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [http://www.statistica.it/gianluca/](http://www.statistica.it/gianluca/) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#EA7600;height:0.8em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [https://egon.stats.ucl.ac.uk/research/statistics-health-economics/](https://egon.stats.ucl.ac.uk/research/statistics-health-economics/) <svg viewBox="0 0 496 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:black;height:0.8em;"> [ comment ] <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [https://github.com/giabaio](https://github.com/giabaio) <svg viewBox="0 0 496 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:black;height:0.8em;"> [ comment ] <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [https://github.com/StatisticsHealthEconomics](https://github.com/StatisticsHealthEconomics) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#00acee;height:0.8em;"> [ comment ] <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg> [@gianlubaio](https://twitter.com/gianlubaio) ] ### Virtual ISPOR US Conference, The Internet <!-- Can also separate the various components of the extra argument 'params', eg as in ### Virtual ISPOR US Conference, The Internet, Who wants to be a Bayesian? --> 20 May 2021 <span style="display:block; margin-top: 25px ;"></span> .small[This presentation is available at <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [www.statistica.it/gianluca/slides/ispor-2021](www.statistica.it/gianluca/slides/ispor-2021)] <!-- This adds a footer (optional and with other possibilities...) --> .footer-left[ <span><a href="http://www.statistica.it/gianluca/"><img src="assets/logo.png" title="Go home" width="2.0%"></a></span> <span style="position: relative; bottom: 5px; color: #D5D5D5;"> © Gianluca Baio (UCL)</span> ] --- layout: true .footer-left[ <span><a href="http://www.statistica.it/gianluca/"><img src="assets/logo.png" title="Go home" width="2.0%"></a></span> <span style="position: relative; bottom: 5px; color: #D5D5D5;"> © Gianluca Baio (UCL)</span> ] <!-- Can also add a center footer, eg to include the title of the talk --> .footer-center[ Who wants to be a Bayesian? ] <!-- And a right footer, to include the date --> .footer-right[ Virtual ISPOR US Conference, 20 May 2021 ] --- # What are we talking about?... .left-column[ <center><img src=./img/is_there_a_problem.gif width='80%' title=''></center> ] .right-column[ ] --- count: false # What are we talking about?... .left-column[ <center><img src=./img/is_there_a_problem.gif width='80%' title=''></center> ] .right-column[ ... Well, there are **many** problems! ## Data 1. We may (or may not!) access **individual level data** for "our" trial, but not for the competitors' 2. The trial data have a very limited follow up, which implies large amount of censoring - This is often OK(-ish!) for "medical stats" analysis. But **HORRIBLE** for economic evaluation! `\(\Rightarrow\)` Extrapolation 3. Often the data are manipulated by the stats team within the sponsor and the economic modellers only get summaries/estimates - It is **ALWAYS** good to [leave things to statisticians](https://twitter.com/manuelajoore/status/1329413099678539785). But the modellers can (should?!) be statisticians too, so they could handle the data!... ] --- count: false # What are we talking about?... .left-column[ <center><img src=./img/is_there_a_problem.gif width='80%' title=''></center> ] .right-column[ ... Well, there are **many** problems! ## Data 1. We may (or may not!) access **individual level data** for "our" trial, but not for the competitors' 2. The trial data have a very limited follow up, which implies large amount of censoring - This is often OK(-ish!) for "medical stats" analysis. But **HORRIBLE** for economic evaluation! `\(\Rightarrow\)` Extrapolation 3. Often the data are manipulated by the stats team within the sponsor and the economic modellers only get summaries/estimates - It is **ALWAYS** good to [leave things to statisticians](https://twitter.com/manuelajoore/status/1329413099678539785). But the modellers can (should?!) be statisticians too, so they could handle the data!... ## Models 1. Which model is the "best fit" – how to judge that? 2. Is modelling even enough? (How to make the most of "external data") 3. Should you be Bayesians about this? - (Spoiler alert: the answer is *always* Yes!...) ] --- # Combining composite data sources ## Increasingly popular - 13 Technology Assessments (TAs) in immuno-oncology in the period 2019-2021 - 7 formally included external data, of various form - Sources used to support treatment effect waning (or lack of it) included: - Other non-pivotal clinical trials and published sources with specific % of patients alive at a time point - Flatiron (or other registries such as SEER) - Clinical expert opinion ("soft" vs "hard" data... `\(\Rightarrow\)` more on this later) - On % of patients surviving at a specific time `\(t\)` - On clinical implausibility of hazards crossing and becoming higher for intervention vs comparator -- ## Challenges - Heterogeneity/representativeness - "Exchangeability" - Afterthought vs plan ahead... - KOL/Expert opinion/soft evidence: elicitation, formal modelling?... --- # *To be or not to be (a Bayesian)?...* .center[ .pull-left[ ### Frequentist ("standard") ] .pull-right[ ### Bayesian ] ] .center[ <center><img src=./img/unnamed-chunk-2-1.png width='75%' title=''></center> ] <span style="display:block; margin-top: 40px ;"></span> - A Bayesian only speaks one language: probability distributions to describe - Sampling variability (relevant for observ.blue[***ed***] data) - Epistemic uncertainty (relevant for .orange[***un***]observ.orange[***able***] parameters + yet .magenta[***un***]observ.magenta[***ed***] future data) -- - Contextual (="prior") information to be formally included in the construction of the model - Almost irrelevant when evidence is "definitive" (large and consistent data) - Crucial when data are sparse! (... But this isn't preposterous, is it?...) --- count: false # *To be or not to be (a Bayesian)?...* ## In HTA .center[ .pull-left[ ### Frequentist ("standard") <center><img src=./img/two-stage.png width='610px' title=''></center> ] .pull-right[ ### Bayesian <center><img src=./img/integrated.png width='610px' title=''></center> ] ] --- exclude: true # Survival analysis in HTA ## General structure `$$\class{myblue}{t \sim f(\mu(\bm{x}),\alpha(\bm{x})), \qquad t\geq 0}$$` - `\(\bm{x}=\)` vector of covariates (potentially influencing survival) - `\(\mu(\bm{x})=\)` .blue[**location**] parameter - Scale or mean – usually main objective of the (biostats!) analysis - Typically depends on the covariates `\(\bm{x}\)` - `\(\alpha(\bm{x})=\)` .olive[**ancillary**] parameters - Shape, variances, etc - May depend on `\(\bm{x}\)`, but often assume they don't (see <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [NICE TSD 14](http://nicedsu.org.uk/technical-support-documents/survival-analysis-tsd/)) - **NB**: `\(S(t)\)` and `\(h(t)\)` are functions of `\(\mu(\bm{x}), \alpha(\bm{x})\)` -- exclude: true - Typically use generalised linear model `$$\class{myblue}{g(\mu_i)=\beta_0 + \sum_{j=1}^J \beta_j x_{ij} [+ \ldots]}$$` <span style="display:block; margin-top: -20px ;"></span> – since `\(t>0\)`, usually, `\(g(\cdot) = \log\)` - In a Bayesian setting, complete by putting suitable priors on `\(\bm\beta\)` and `\(\alpha\)` --- # **Bayesian** survival analysis in HTA <center><img src=./img/table_mod2.png width='70%' title=''></center> .small[.alignright[<svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> [ comment ] <path d="M256 8c137 0 248 111 248 248S393 504 256 504 8 393 8 256 119 8 256 8zm-28.9 143.6l75.5 72.4H120c-13.3 0-24 10.7-24 24v16c0 13.3 10.7 24 24 24h182.6l-75.5 72.4c-9.7 9.3-9.9 24.8-.4 34.3l11 10.9c9.4 9.4 24.6 9.4 33.9 0L404.3 273c9.4-9.4 9.4-24.6 0-33.9L271.6 106.3c-9.4-9.4-24.6-9.4-33.9 0l-11 10.9c-9.5 9.6-9.3 25.1.4 34.4z"></path></svg> [See here](https://www.jstatsoft.org/article/view/v095i14)]] --- count: false # **Bayesian** survival analysis in HTA - We can specify "minimally informative" priors (eg like [`survHE`](http://www.statistica.it/gianluca/software/survhe/) does by default) - In many ways, that's the "lazy" option... - Similarly, we can try the various models suggested in the guidelines and see what happens... -- .pull-left[ <center><img src=./img/Seriously-Sherlock-Holmes.gif width='100%' title=''></center> ] -- .pull-right[ - We probably *know* something more about the likely shape of the hazard function - Likely to be monotonically increasing? - Definitely unlikely to be constant over time?... - These considerations should drive the choice of models **over and above** testing all the options! ] --- count: false # **Bayesian** survival analysis in HTA - We can specify "minimally informative" priors (eg like [`survHE`](http://www.statistica.it/gianluca/software/survhe/) does by default) - In many ways, that's the "lazy" option... - Similarly, we can try the various models suggested in the guidelines and see what happens... .pull-left[ <center><img src=./img/Seriously-Sherlock-Holmes.gif width='100%' title=''></center> ] .pull-right[ - We probably *know* something more about the likely shape of the hazard function - Likely to be monotonically increasing? - Definitely unlikely to be constant over time?... - These considerations should drive the choice of models **over and above** testing all the options! <span style="display:block; margin-top: 20px ;"></span> - What else do we know? - Likely average survival time - Chances of surviving after `\(t^*\)` units of time (eg >75 years old) - Population data to "anchor" the extrapolated survival curves - `\(\ldots\)` ] --- # Example: ICD & Cardiac death ## Basic idea/modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Benaglia et al (2015)](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847642/)] Use UK population data (matched by age/sex) to "**anchor**" the ICD population at risk - Perhaps the easiest way to do this is to relate the hazard between the two populations – eg **proportional hazard** (PH) model <span style="display:block; margin-top: -20px ;"></span> `$$\class{myblue}{h_{\rm{ICD}}(t) = e^{\beta}h_{\rm{UK}}(t) \qquad \Leftrightarrow \qquad \HR = \frac{h_{\rm{ICD}}(t)}{h_{\rm{UK}}(t)} = e^{\beta} = \style{font-family:inherit;}{\text{Constant}}}$$` <span style="display:block; margin-top: -20px ;"></span> - Relatively easy to model – but probably very unrealistic! - ICD patients are at (much?) greater risk of arrhythmia death - If the proportion of deaths caused by arrythmia changes over time, we would induce bias, because we would be extrapolate a constant HR for all causes mortality -- - Formally account for multiple mortality causes (.blue[**Poly-Weibull**] model <svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Demiris et al, 2015](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456429/)): `\begin{align} \class{myblue}{h_{\rm{ICD}}(t)} &\class{myblue}{= h}_{\rm{\class{red}{ICD}}}^{\rm{\class{myblue}{arr}}}\class{myblue}{(t) + h}_{\rm{\class{red}{ICD}}}^{\rm{\class{myblue}{oth}}}\class{myblue}{(t)} \\ &\class{myblue}{=} \class{orange}{e^\beta} \class{myblue}{h^{\rm{arr}}}_{\rm{\class{blue}{UK}}}\class{myblue}{(t)} + \class{myblue}{h^{\rm{oth}}}_{\rm{\class{blue}{UK}}}\class{myblue}{(t)} \\ &\class{myblue}{=} \class{orange}{e^\beta}\class{myblue}{\alpha_1 \mu_1 t^{\alpha_1-1} + \alpha_2 \mu_2 t^{\alpha_2-1}} \end{align}` <span style="display:block; margin-top: -20px ;"></span> - This assumes that - Arrhythmia hazard is .orange[**proportional**] to matched UK population - Other causes hazard is **identical** to matched UK population --- count: false <style type="text/css"> .pull-left-nospace { float: left; width: 30%; margin-left: 40px; margin-top: 10px; } .pull-right-nospace { float: right; width: 60%; margin-top: 10px; margin-left: -80px; } .pull-right-nospace ~ * { content: ""; display: table; clear: both; } </style> # Example: ICD & Cardiac death ## Turning prior *information* into a prior *distribution* - In the ICD case, age at entry is around 60 – we **know** that people won't survive more than 60 more years - Setting a prior for the scale `\(\mu_i \sim \dunif(0,100)\)` implies that the prior mean survival of the resulting Weibull distribution is `$$\class{myblue}{\style{font-family:inherit;}{\text{expected survival time}}=\mu_i\Gamma\left(1+\frac{1}{\alpha}\right) < 60}$$` - Can also include some knowledge on the shape `\(\alpha\)` and the coefficient `\(\beta\)` to limit their variations in reasonable ranges... -- .pull-left-nospace[ <center><img src=./img/friends-gif.gif width='100%' title=''></center> ] .pull-right-nospace[ - This isn't necessarily easy! - You need to be friends with a statistician... - Don't be lost in translation... - *Elicit* the actual .blue[**information**] and then map it onto a possible and reasonable .red[**distribution**] - Mapping changes with the mathematical properties of the underlying sampling distribution selected... ] --- count: false # Example: ICD & Cardiac death <center><img src=./img/ICD2.png width='85%' title='INCLUDE TEXT HERE'></center> - Ignoring cause-specific mortality (simple .red[Weibull model]) results in larger bias, especially for females, mostly because the arrhythmia proportion of deaths does vary over time in that subgroup --- # Example: constraints on `\(S(t)\)` ### Observed data <center><img src=./img/surv1-1.png width='72%' title=''></center> --- count: false # Example: constraints on `\(S(t)\)` ### Parametric extrapolation <center><img src=./img/surv2-1.png width='72%' title=''></center> --- count: false # Example: constraints on `\(S(t)\)` ## What do we see? - The data are **sparse** and the follow up is limited in comparison to the relevant time horizon - The **best fitting** model responds by extrapolating a survival curves that implies `\(\Pr(\style{font-family:inherit;}{\text{Still alive after 100 months}})>\)` 0.5 - This is most likely a ridiculous finding! -- <span style="display:block; margin-top: 40px ;"></span> ## What do we know? - Perhaps we may think a bit more carefully and figure out some kind of "constraint" or upper limit for the survival probability at a given time point in the future... - Maybe, it's not so controversial to assume that, **before observing any data**, `\(\Pr(\style{font-family:inherit;}{\text{Still alive after 70 months}})\)` should not exceed, say, 0.20 - We can use this information in our prior specification and let it be modified by the observed data - This is a relatively strong prior, so you would need a **really** strong signal to modify it significantly... <span style="display:block; margin-top: 50px ;"></span> .alignright[(*Che et al*, work in progress...)] --- count: false # Example: constraints on `\(S(t)\)` ### Constrained semi-parametric <center><img src=./img/surv3-1.png width='72%' title=''></center> --- # Mixture "cure" models (MCMs) - Sustained treatment effect - Effectively, a fraction of individuals are subject to a different "data generating process" - The overall survival curve is a combination of two components `\(\Rightarrow\)` **mixture** model `$$\class{myblue}{S(t, \bm{x}) = S_b(t, \bm{x})[\pi(\bm{x}) + \left(1 − \pi(\bm{x})\right)S_c(t, \bm{x})]},$$` - `\(\class{myblue}{\bm{x}}=\)` a vector of individual level covariates - `\(\class{myblue}{S_b(t,\bm{x})}=\)` (complement of) background mortality for the population with `\(\bm{x}\)` profile - `\(\class{myblue}{S_c(t,\bm{x})}=\)` (complement of) cancer-specific mortality for the population with `\(\bm{x}\)` profile - `\(\class{myblue}{\pi(\bm{x})}=\)` "cure fraction" = proportion of individuals with `\(\bm{x}\)` profile who are "cured" - Basically, this means that the overall survival in the population with `\(\bm{x}\)` profile - Is the same as the "healthy" population for the proportion who are "cured" - It has an extra multiplicative, independent risk associated with the event (cancer) for those who aren't <span style="display:block; margin-top: 20px ;"></span> - We may have some biological/pharmacological insight as to the potential for this phenomenon - Possibly plausible with immuno-oncological drugs -- <span style="display:block; margin-top: 30px ;"></span> - **BUT**: most likely, we'll have to base our judgement on a limited follow up - This may suggest a plateau in one treatment arm, which is likely based on very uncertain evidence --- count: false exclude: true # Mixture "cure" models (MCMs) ## What you see is what you get?... HERE INCLUDE GRAPH WITH DIFFERENT DATA CUTS --- # **Bayesian** MCMs - "Standard" MCMs basically assume no prior knowledge about the "cure fraction" `\(\pi\)` - This means that the data are taken at face value - Weak evidence of flattening of the survival curve may lead to unrealistically large estimates for the the cure fraction - **BUT**: assuming no prior information on `\(\pi\)` basically implies that we (implicitly) believe that it can be very large - Implausible in most cases - Can look at other, more established treatments -- <span style="display:block; margin-top: 20px ;"></span> - If you're Bayesian about this, you may use a "regularising" prior to avoid "parachute effect"... .content-box-beamer[ ### Typically, we can restrict the likely size of some effect, in **real** applications - If you take 100 people on an airplane, randomise them to either get a parachute or not and measure whether they're still alive after jumping off the plane - Almost everybody with the parachute will be OK, almost everybody without will not! - You can reasonably expect a large "treatment effect" with OR `\(\approx\)` 100, or so... <span style="display:block; margin-top: 20px ;"></span> - With pharmaceutical interventions, this is not so common - Use *skeptical* priors (+ sensitivity analysis!) to restrict the likely range of effects - If the data are overwhelming pointing towards a large effect, the model will be able to pick that up - **BUT** you want to really see a signal before you call one... ] --- count: false # **Bayesian** MCMs <style type="text/css"> .right-30 { float: right; width: 40%; margin-top: 10px; } .right-30 ~ * { content: ""; display: table; clear: both; } .left-60 { float: left; width: 60%; margin-left: 0px; margin-top: 20px; } </style> .left-60[ <center><img src=./img/unnamed-chunk-5-1.png width='120%' title=''></center> ] .right-30[ - We may think that the cure fraction is unlikely to exceed 30% - And that a reasonable expectation would be 20% "success" - And we may want to allow for `\(\pi\)` to be actually as low as close to no "cured" at all <span style="display:block; margin-top: 20px ;"></span> - We can *encode* this **information** using a `\(\dbeta\)`(3.97,18.09) distribution - The parameters `\(\alpha=\)` 3.97 and `\(\beta=\)` 18.09 can be "guessed" by trial and error **OR** working out some algebra - **Before seeing any data**, this means that you're expecting - mean cure fraction = 0.22 - 95% range = [0.054; 0.36] - The observed data will modify this – but unless you have a **very** strong signal in the data, you won't go all crazy suggesting a *definite* plateau... ] --- # Example: CM017 – nivolumab ### Early data cut (24 months) <center><img src=./img/plateau1-1.png width='72%' title=''></center> <span style="display:block; margin-top: -20pt ;"></span> .small[.alignright[<svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> [ comment ] <path d="M256 8c137 0 248 111 248 248S393 504 256 504 8 393 8 256 119 8 256 8zm-28.9 143.6l75.5 72.4H120c-13.3 0-24 10.7-24 24v16c0 13.3 10.7 24 24 24h182.6l-75.5 72.4c-9.7 9.3-9.9 24.8-.4 34.3l11 10.9c9.4 9.4 24.6 9.4 33.9 0L404.3 273c9.4-9.4 9.4-24.6 0-33.9L271.6 106.3c-9.4-9.4-24.6-9.4-33.9 0l-11 10.9c-9.5 9.6-9.3 25.1.4 34.4z"></path></svg> [Chaudhari et al (2020)](https://tinyurl.com/4f3v3b57)]] --- count: false # Example: CM017 – nivolumab ### Later data cut (48 months) <center><img src=./img/plateau2-1.png width='72%' title=''></center> <span style="display:block; margin-top: -20pt ;"></span> .small[.alignright[<svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> [ comment ] <path d="M256 8c137 0 248 111 248 248S393 504 256 504 8 393 8 256 119 8 256 8zm-28.9 143.6l75.5 72.4H120c-13.3 0-24 10.7-24 24v16c0 13.3 10.7 24 24 24h182.6l-75.5 72.4c-9.7 9.3-9.9 24.8-.4 34.3l11 10.9c9.4 9.4 24.6 9.4 33.9 0L404.3 273c9.4-9.4 9.4-24.6 0-33.9L271.6 106.3c-9.4-9.4-24.6-9.4-33.9 0l-11 10.9c-9.5 9.6-9.3 25.1.4 34.4z"></path></svg> [Chaudhari et al (2020)](https://tinyurl.com/4f3v3b57)]] --- # Conclusions ## Too much, too soon? - Tension between early introduction in the market and reimbursment decisions on the back of promising, but extremely immature data - Early plateau that doesn't materialise in later data cuts - Divorce between "medical" and "economic" analysis - Lancet papers are OK with estimating median survival time and HRs... Economic evaluations need extrapolation to estimate mean survival time -- ## All the help you can get - Long-term data are ideal – if they're aligned with the population of interest and heterogeneity is manageable (and managed!) - Often, even defining a comparator is a very complex operation and the market landscape is tricky... - Registry data can produce information "in real time". **But**: at the price of confounding/need for confirmation periods (conditional registration/reimbursment?) -- ## Know what you know - Some information ***is*** controversial and subjective and could bias the assessment. **But**: other simply isn't and we shouldn't be afraid to use it! --- exclude: true # References NULL --- class: thankyou-barney