class: title-slide # Bayesian approaches for addressing missing data in Cost-Effectiveness Analysis (alongside Randomised Controlled Trials) ## Gianluca Baio ### [Department of Statistical Science](https://www.ucl.ac.uk/statistics/) | University College London .title-small[ <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#00acee;height:0.8em;"> [ comment ] <path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"></path></svg> [g.baio@ucl.ac.uk](mailto:g.baio@ucl.ac.uk) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#EA7600;height:0.8em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [http://www.statistica.it/gianluca/](http://www.statistica.it/gianluca/) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#EA7600;height:0.8em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path></svg> [https://egon.stats.ucl.ac.uk/research/statistics-health-economics/](https://egon.stats.ucl.ac.uk/research/statistics-health-economics/) <svg viewBox="0 0 496 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:black;height:0.8em;"> [ comment ] <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [https://github.com/giabaio](https://github.com/giabaio) <svg viewBox="0 0 496 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:black;height:0.8em;"> [ comment ] <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [https://github.com/StatisticsHealthEconomics](https://github.com/StatisticsHealthEconomics) <svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#00acee;height:0.8em;"> [ comment ] <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg> [@gianlubaio](https://twitter.com/gianlubaio) ] ### RSS South West Local Group, Internettown <!-- Can also separate the various components of the extra argument 'params', eg as in ### RSS South West Local Group, Internettown, Missing data in HTA --> 16 June 2021 <!-- This adds a footer (optional and with other possibilities...) --> .footer-left[ <span><a href="http://www.statistica.it/gianluca/"><img src="assets/logo.png" title="Go home" width="2.0%"></a></span> <span style="position: relative; bottom: 5px; color: #D5D5D5;"> © Gianluca Baio (UCL)</span> ] --- layout: true .footer-left[ <span><a href="http://www.statistica.it/gianluca/"><img src="assets/logo.png" title="Go home" width="2.0%"></a></span> <span style="position: relative; bottom: 5px; color: #D5D5D5;"> © Gianluca Baio (UCL)</span> ] <!-- Can also include social media icons & hyperlinks --> .footer-social[ <a href="https://twitter.com/giabaio"; title="Follow me on Twitter"><svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#bcc0c4;height:0.8em;bottom:1em;"> [ comment ] <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path> </svg></a> <a href="mailto:g.baio@ucl.ac.uk"; title="Email me"><svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#bcc0c4;height:0.8em;"> [ comment ] <path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"></path> </svg></a> <a href="http://www.statistica.it/gianluca"; title="Visit my website"><svg viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:#bcc0c4;height:0.8em;"> [ comment ] <path d="M503.52,241.48c-.12-1.56-.24-3.12-.24-4.68v-.12l-.36-4.68v-.12a245.86,245.86,0,0,0-7.32-41.15c0-.12,0-.12-.12-.24l-1.08-4c-.12-.24-.12-.48-.24-.6-.36-1.2-.72-2.52-1.08-3.72-.12-.24-.12-.6-.24-.84-.36-1.2-.72-2.4-1.08-3.48-.12-.36-.24-.6-.36-1-.36-1.2-.72-2.28-1.2-3.48l-.36-1.08c-.36-1.08-.84-2.28-1.2-3.36a8.27,8.27,0,0,0-.36-1c-.48-1.08-.84-2.28-1.32-3.36-.12-.24-.24-.6-.36-.84-.48-1.2-1-2.28-1.44-3.48,0-.12-.12-.24-.12-.36-1.56-3.84-3.24-7.68-5-11.4l-.36-.72c-.48-1-.84-1.8-1.32-2.64-.24-.48-.48-1.08-.72-1.56-.36-.84-.84-1.56-1.2-2.4-.36-.6-.6-1.2-1-1.8s-.84-1.44-1.2-2.28c-.36-.6-.72-1.32-1.08-1.92s-.84-1.44-1.2-2.16a18.07,18.07,0,0,0-1.2-2c-.36-.72-.84-1.32-1.2-2s-.84-1.32-1.2-2-.84-1.32-1.2-1.92-.84-1.44-1.32-2.16a15.63,15.63,0,0,0-1.2-1.8L463.2,119a15.63,15.63,0,0,0-1.2-1.8c-.48-.72-1.08-1.56-1.56-2.28-.36-.48-.72-1.08-1.08-1.56l-1.8-2.52c-.36-.48-.6-.84-1-1.32-1-1.32-1.8-2.52-2.76-3.72a248.76,248.76,0,0,0-23.51-26.64A186.82,186.82,0,0,0,412,62.46c-4-3.48-8.16-6.72-12.48-9.84a162.49,162.49,0,0,0-24.6-15.12c-2.4-1.32-4.8-2.52-7.2-3.72a254,254,0,0,0-55.43-19.56c-1.92-.36-3.84-.84-5.64-1.2h-.12c-1-.12-1.8-.36-2.76-.48a236.35,236.35,0,0,0-38-4H255.14a234.62,234.62,0,0,0-45.48,5c-33.59,7.08-63.23,21.24-82.91,39-1.08,1-1.92,1.68-2.4,2.16l-.48.48H124l-.12.12.12-.12a.12.12,0,0,0,.12-.12l-.12.12a.42.42,0,0,1,.24-.12c14.64-8.76,34.92-16,49.44-19.56l5.88-1.44c.36-.12.84-.12,1.2-.24,1.68-.36,3.36-.72,5.16-1.08.24,0,.6-.12.84-.12C250.94,20.94,319.34,40.14,367,85.61a171.49,171.49,0,0,1,26.88,32.76c30.36,49.2,27.48,111.11,3.84,147.59-34.44,53-111.35,71.27-159,24.84a84.19,84.19,0,0,1-25.56-59,74.05,74.05,0,0,1,6.24-31c1.68-3.84,13.08-25.67,18.24-24.59-13.08-2.76-37.55,2.64-54.71,28.19-15.36,22.92-14.52,58.2-5,83.28a132.85,132.85,0,0,1-12.12-39.24c-12.24-82.55,43.31-153,94.31-170.51-27.48-24-96.47-22.31-147.71,15.36-29.88,22-51.23,53.16-62.51,90.36,1.68-20.88,9.6-52.08,25.8-83.88-17.16,8.88-39,37-49.8,62.88-15.6,37.43-21,82.19-16.08,124.79.36,3.24.72,6.36,1.08,9.6,19.92,117.11,122,206.38,244.78,206.38C392.77,503.42,504,392.19,504,255,503.88,250.48,503.76,245.92,503.52,241.48Z"></path> </svg></a> ] <!-- Can also add a center footer, eg to include the title of the talk --> .footer-center[ Missing data in HTA ] <!-- And a right footer, to include the date --> .footer-right[ RSS South West Local Group, 16 Jun 2021 ] --- # Disclaimer... <center> <blockquote class="twitter-tweet"><p lang="en" dir="ltr">Best opening sentence <a href="https://twitter.com/hashtag/ISPOREurope?src=hash&ref_src=twsrc%5Etfw">#ISPOREurope</a> from Gianluca Baio: “statisticians should rule the world and Bayesian statisticians should rule all statisticians” <a href="https://t.co/GN2w7liAcR">https://t.co/GN2w7liAcR</a></p>— Manuela Joore (@ManuelaJoore) <a href="https://twitter.com/ManuelaJoore/status/1191397718930939904?ref_src=twsrc%5Etfw">November 4, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> </center> <span style="display:block; margin-top: 10px ;"></span> ...Just so you know what you're about to get into... 😉 --- # Health technology assessment (HTA) **Objective**: Combine .red[costs] and .blue[benefits] of a given intervention into a rational scheme for allocating resources -- <center><img src=./img/hta-scheme1.png width='80%' title='INCLUDE TEXT HERE'></center> --- count: false # Health technology assessment (HTA) **Objective**: Combine .red[costs] and .blue[benefits] of a given intervention into a rational scheme for allocating resources <center><img src=./img/hta-scheme2.png width='80%' title='INCLUDE TEXT HERE'></center> --- count: false # Health technology assessment (HTA) **Objective**: Combine .red[costs] and .blue[benefits] of a given intervention into a rational scheme for allocating resources <center><img src=./img/hta-scheme3.png width='80%' title='INCLUDE TEXT HERE'></center> --- count: false # Health technology assessment (HTA) **Objective**: Combine .red[costs] and .blue[benefits] of a given intervention into a rational scheme for allocating resources <center><img src=./img/hta-scheme4.png width='80%' title='INCLUDE TEXT HERE'></center> --- count: false # Health technology assessment (HTA) <center><img src=./img/hta-psa-1.png width='75%' title='INCLUDE TEXT HERE'></center> <span style="display:block; margin-top: -14.6cm ;"></span> **Probabilistic Sensitivity Analysis (PSA)** --- count: false # Health technology assessment (HTA) <center><img src=./img/two-stage.png width='75%' title='INCLUDE TEXT HERE'></center> .small["***Two-stage* approach**" ([Spiegelhalter et al, 2004](https://onlinelibrary.wiley.com/doi/book/10.1002/0470092602))] --- count: false # Health technology assessment (HTA) <center><img src=./img/integrated.png width='73%' title='INCLUDE TEXT HERE'></center> .small["***Integrated* approach**" ([Spiegelhalter et al, 2004](https://onlinelibrary.wiley.com/doi/book/10.1002/0470092602); [Baio et al, 2017](http://www.statistica.it/gianluca/book/bcea/))] --- # **Individual**-level data ## HTA alongside RCTs <table class=" lightable-classic table" style="font-family: Ubuntu; font-size: 14px; margin-left: auto; margin-right: auto; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="empty-cells: hide;" colspan="2"></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; color: orange !important;" colspan="3"><div style="border-bottom: 1px solid #111111; margin-bottom: -1px; ">Demographics</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; color: olive !important;" colspan="4"><div style="border-bottom: 1px solid #111111; margin-bottom: -1px; ">Clinical outcomes</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; color: blue !important;" colspan="4"><div style="border-bottom: 1px solid #111111; margin-bottom: -1px; ">HRQL data</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; color: red !important;" colspan="4"><div style="border-bottom: 1px solid #111111; margin-bottom: -1px; ">Resource use data</div></th> </tr> <tr> <th style="text-align:center;color: black !important; font-weight: bold;"> ID </th> <th style="text-align:center;color: black !important; font-weight: bold"> Trt </th> <th style="text-align:center;color: orange !important;"> Sex </th> <th style="text-align:center;color: orange !important;"> Age </th> <th style="text-align:center;color: orange !important;"> \(\ldots\) </th> <th style="text-align:center;color: blue !important;"> \(\color{olive}{y_0}\) </th> <th style="text-align:center;color: blue !important;"> \(\color{olive}{y_1}\) </th> <th style="text-align:center;color: blue !important;"> \(\color{olive}{\ldots}\) </th> <th style="text-align:center;color: blue !important;"> \(\color{olive}{y_J}\) </th> <th style="text-align:center;color: blue !important;"> \(\color{blue}{u_0}\) </th> <th style="text-align:center;color: blue !important;"> \(\color{blue}{u_1}\) </th> <th style="text-align:center;color: blue !important;"> \(\ldots\) </th> <th style="text-align:center;color: red !important;"> \(\color{blue}{u_J}\) </th> <th style="text-align:center;color: red !important;"> \(\color{red}{c_0}\) </th> <th style="text-align:center;color: red !important;"> \(\color{red}{c_1}\) </th> <th style="text-align:center;color: red !important;"> \(\ldots\) </th> <th style="text-align:center;color: red !important;"> \(\color{red}{c_J}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;color: orange !important;"> M </td> <td style="text-align:center;color: orange !important;"> 23 </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{10}\) </td> <td style="text-align:center;color: olive !important;"> \(y_{11}\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{1J}\) </td> <td style="text-align:center;color: blue !important;"> 0.32 </td> <td style="text-align:center;color: blue !important;"> 0.66 </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> 0.44 </td> <td style="text-align:center;color: red !important;"> 103 </td> <td style="text-align:center;color: red !important;"> 241 </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> 80 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;color: orange !important;"> M </td> <td style="text-align:center;color: orange !important;"> 23 </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{20}\) </td> <td style="text-align:center;color: olive !important;"> \(y_{21}\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{2J}\) </td> <td style="text-align:center;color: blue !important;"> 0.12 </td> <td style="text-align:center;color: blue !important;"> 0.16 </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> 0.38 </td> <td style="text-align:center;color: red !important;"> 1204 </td> <td style="text-align:center;color: red !important;"> 1808 </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> 877 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 2 </td> <td style="text-align:center;color: orange !important;"> F </td> <td style="text-align:center;color: orange !important;"> 19 </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{30}\) </td> <td style="text-align:center;color: olive !important;"> \(y_{31}\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(y_{3J}\) </td> <td style="text-align:center;color: blue !important;"> 0.49 </td> <td style="text-align:center;color: blue !important;"> 0.55 </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> 0.88 </td> <td style="text-align:center;color: red !important;"> 16 </td> <td style="text-align:center;color: red !important;"> 23 </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> 22 </td> </tr> <tr> <td style="text-align:center;"> \(\ldots\) </td> <td style="text-align:center;"> \(\ldots\) </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: orange !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: olive !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: blue !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> <td style="text-align:center;color: red !important;"> \(\ldots\) </td> </tr> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; font-weight: bold; color: black !important;" colspan="17"><div style="border-bottom: 1px solid #111111; margin-bottom: -1px; "></div></th> </tbody> </table> <p style="margin-left: 2em; margin-top: 10px">– \(\class{olive}{y_{ij}}=\) Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ...</p> <p style="margin-left: 2em;">– \(\class{blue}{u_{ij}}=\) Utility-based score to value health (eg <a href="https://euroqol.org/">EQ-5D</a>, <a href="https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form/scoring.html">SF-36</a>, <a href="https://en.wikipedia.org/wiki/Hospital_Anxiety_and_Depression_Scale">Hospital & Anxiety Depression Scale)</a>, ...</p> <p style="margin-left: 2em;">– \(\class{red}{c_{ij}}=\) Use of resources (drugs, hospital, GP appointments), ...</p> <span style="display:block; margin-top: 10px ;"></span> - Usually aggregate longitudinal measurements into a cross-sectional summary and for each individual consider the pair `\(\class{myblue}{(e_i,c_i)}\)` <span style="display:block; margin-top: 20px ;"></span> -- - HTA preferably based on .red[**utility-based**] measures of effectiveness - Quality Adjusted Life Years (QALYs) are a measure of disease burden combining - .blue90red60[**Quantity**] of life (the amount of time spent in a given health state) - .blue60red90[**Quality**] of life (the utility attached to that state) --- # ("Standard") Statistical modelling 1. Compute individual QALYs and total costs as `$$\class{myblue}{e_i = \displaystyle\sum_{j=1}^{J} \left(u_{ij}+u_{i\hspace{.5pt}j-1}\right) \frac{\delta_{j}}{2}} \qquad \style{font-family:inherit;}{\text{ and }} \class{myblue}{\qquad c_i = \sum_{j=0}^J c_{ij}} \qquad \left[\style{font-family:inherit;}{\text{with: }} \class{myblue}{\delta_j = \frac{\style{font-family:inherit;}{\text{Time}}_j - \style{font-family:inherit;}{\text{Time}}_{j-1}}{\style{font-family:inherit;}{\text{Unit of time}}}}\right]$$` -- 2. (Often implicitly) assume normality and linearity and model .olive[**independently**] individual QALYs and total costs by controlling for (**centered**) baseline values, eg `\(\class{myblue}{u^∗ = (u − \bar{u} )}\)` and `\(\class{myblue}{c^∗ = (c − \bar{c} )}\)` `\begin{align} e_i & = \alpha_{e0} + \alpha_{e1} u^*_{0i} + \alpha_{e2} \style{font-family:inherit;}{\text{Trt}}_i + \varepsilon_{ei}\, [+ \ldots], \qquad \varepsilon_{ei} \sim \dnorm(0,\sigma_e) \\ c_i & = \alpha_{c0} + \alpha_{c1} c^*_{0i} + \alpha_{c2} \style{font-family:inherit;}{\text{Trt}}_i + \varepsilon_{ci}\, [+ \ldots], \qquad\hspace{2pt} \varepsilon_{ci} \sim \dnorm(0,\sigma_c) \end{align}` -- 3. Estimate population average cost and effectiveness differentials - **Under this model specification**, these are `\(\class{myblue}{\Delta_e=\alpha_{e2}}\)` and `\(\class{myblue}{\Delta_c=\alpha_{c2}}\)` -- 4. Quantify impact of uncertainty in model parameters on the decision making process - In a fully frequentist analysis, this is done using resampling methods (eg bootstrap) --- exclude: true # ("Standard") Statistical modelling <span style="display:block; margin-top: -8px ;"></span> 1. Build a population level model (eg decision tree/Markov model) <img src="./img/unnamed-chunk-3-1.png" style="display: block; margin: auto;" width="75%" title="INSERT TEXT HERE"> **NB**: in this case, the "data" are typically represented by summary statistics for the parameters of interest `\(\bm\theta= (p_0 , p_1 , l, \ldots)\)`, but may also have access to a combination of ILD and summaries -- exclude: true <span style="display:block; margin-top: -10px ;"></span> <ol style="counter-reset: my-awesome-counter 1;"> <li> Use point estimates for the parameters to build the “base-case” (average) evaluation</li> <li>Use resampling methods (eg bootstrap) to propage uncertainty in the point estimates and perform uncertainty analysis</li> </ol> --- background-image: url("img/what-is-wrong.gif") background-size: cover # --- name: whatswrong # What's wrong with that?... - Potential correlation between costs & clinical benefits .alignright[.orange[[**Individual level + Aggregated level Data**]]] - Strong positive correlation: effective treatments are innovative and result from intensive and lengthy research `\(\Rightarrow\)` are associated with higher unit costs - Negative correlation: more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc. - Because of the way in which standard models are set up, bootstrapping generally only approximates the underlying level of correlation – .olive[**MCMC does a better job!**] -- - Joint/marginal normality not realistic .alignright[.orange[[**Mainly ILD**]]] - Costs usually skewed and benefits may be bounded in `\([0; 1]\)` - Can use transformation (e.g. logs) – but care is needed when back transforming to the natural scale - Should use more suitable models (e.g. Beta, Gamma or log-Normal) – .olive[**generally easier under a Bayesian framework**] - Particularly relevant in presence of partially observed data – more on this later! -- - Particularly as the focus is on decision-making (rather than just inference), we need to use **all** available evidence to fully characterise current uncertainty on the model parameters and outcomes .alignright[.orange[[**ILD + ALD**]]] - A Bayesian approach is helpful in combining different sources of information - .olive[**Propagating uncertainty is a fundamentally Bayesian operation!**] --- name: factorisation # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)` --- count: false # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = }\class{blue}{p(e)}\class{myblue}{p(c\mid e) = p(c)p(e\mid c)}\)` <center><img src=./img/bayesian_hta1-1.png width='75%' title='TEXT HERE'></center> --- count: false # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = }\class{blue}{p(e)}\class{red}{p(c\mid e)}\class{myblue}{ = p(c)p(e\mid c)}\)` <center><img src=./img/bayesian_hta2-1.png width='75%' title='TEXT HERE'></center> --- count: false # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)` <center><img src=./img/bayesian_hta3-1.png width='75%' title='TEXT HERE'></center> <span style="display:block; margin-top: -20px ;"></span> - For example: `\begin{align} \class{blue}{e_i \sim \style{font-family:inherit;}{\text{Normal}}(\phi_{ei},\tau_e)} && \class{blue}{\phi_{ei}} &\class{blue}{= \alpha_0 [+ \ldots]} && \class{blue}{\mu_e = \alpha_0} \\ \class{red}{c_i\mid e_i \sim \style{font-family:inherit;}{\text{Normal}}(\phi_{ci},\tau_c)} && \class{red}{\phi_{ci}} &\class{red}{= \beta_0 + \beta_1(e_i -\mu_e)[+\ldots]} && \class{red}{\mu_ c = \beta_0} \end{align}` --- count: false # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)` <center><img src=./img/bayesian_hta4-1.png width='75%' title='TEXT HERE'></center> <span style="display:block; margin-top: -20px ;"></span> - For example: <span style="display:block; margin-top: -30px ;"></span> `\begin{align} \class{blue}{e_{i} \sim \style{font-family:inherit;}{\text{Beta}}(\phi_{ei}\tau_e,(1-\phi_{ei})\tau_e)} && \class{blue}{\style{font-family:inherit;}{\text{logit}}(\phi_{ei})} &\class{blue}{= \alpha_0 [+ \ldots]} && \class{blue}{\mu_e = \frac{\style{font-family:inherit;}{\text{exp}}(\alpha_0)}{1+\style{font-family:inherit;}{\text{exp}}(\alpha_0)}} \\ \class{red}{c_i\mid e_i \sim \style{font-family:inherit;}{\text{Gamma}}(\tau_c,\tau_c/\phi_{ci})} && \class{red}{\style{font-family:inherit;}{\text{log}}(\phi_{ci})} &\class{red}{= \beta_0 + \beta_1(e_i -\mu_e)[+\ldots]} && \class{red}{\mu_ c = \style{font-family:inherit;}{\text{exp}}(\beta_0)} \end{align}` --- count: false # Bayesian HTA in action - In general, can represent the joint distribution as `\(\class{myblue}{p(e,c) = p(e)p(c\mid e) = p(c)p(e\mid c)}\)` <center><img src=./img/bayesian_hta4-1.png width='75%' title='TEXT HERE'></center> <span style="display:block; margin-top: -20px ;"></span> - For example: <span style="display:block; margin-top: -30px ;"></span> `\begin{align} \class{blue}{e_{i} \sim \style{font-family:inherit;}{\text{Beta}}(\phi_{ei}\tau_e,(1-\phi_{ei})\tau_e)} && \class{blue}{\style{font-family:inherit;}{\text{logit}}(\phi_{ei})} &\class{blue}{= \alpha_0 [+ \ldots]} && \class{blue}{\mu_e = \frac{\style{font-family:inherit;}{\text{exp}}(\alpha_0)}{1+\style{font-family:inherit;}{\text{exp}}(\alpha_0)}} \\ \class{red}{c_i\mid e_i \sim \style{font-family:inherit;}{\text{Gamma}}(\tau_c,\tau_c/\phi_{ci})} && \class{red}{\style{font-family:inherit;}{\text{log}}(\phi_{ci})} &\class{red}{= \beta_0 + \beta_1(e_i -\mu_e)[+\ldots]} && \class{red}{\mu_ c = \style{font-family:inherit;}{\text{exp}}(\beta_0)} \end{align}` <span style="display:block; margin-top: -10px ;"></span> - Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC - Prior information can help stabilise inference (especially with sparse data!), eg - Cancer patients are unlikely to survive as long as the general population - ORs are unlikely to be greater than `\(\pm \style{font-family:inherit;}{\text{5}}\)` --- # Missing data **in HTA** - Missing data are complicated in any context - But are fairly established in medical/bio-statistical research - In HTA it's even more complicated... - Bivariate outcome, usually correlated - Normality not reasonable (skewness) - Other features of the data ("spikes") - Main objective: decision-making, not inference! --- count: false # Missing data **in HTA** ### Selection models: MCAR `\((e,c)\)` <span style="display:block; margin-top: -20px ;"></span> <center><img src=./img/missing_HTA1.png width='72%' title='INCLUDE TEXT HERE'></center> <span style="display:block; margin-top: 8px ;"></span> - `\(\class{olive}{m_{ei}\sim\dbern(\pi_{ei}); \qquad \logit(\pi_{ei})=\gamma_{e0}}\)` - `\(\class{orange}{m_{ci}\sim\dbern(\pi_{ci}); \qquad \logit(\pi_{ci})=\gamma_{c0}}\)` --- count: false # Missing data **in HTA** ### Selection models: MAR `\((e,c)\)` <span style="display:block; margin-top: -20px ;"></span> <center><img src=./img/missing_HTA2.png width='72%' title='INCLUDE TEXT HERE'></center> <span style="display:block; margin-top: 11px ;"></span> - `\(\class{olive}{m_{ei}\sim\dbern(\pi_{ei}); \qquad \logit(\pi_{ei})=\gamma_{e0} + \sum_{k=1}^K \gamma_{ek}x_{eik}}\)` - `\(\class{orange}{m_{ci}\sim\dbern(\pi_{ci}); \qquad \logit(\pi_{ci})=\gamma_{c0} + \sum_{h=1}^H \gamma_{ch}x_{cih}}\)` --- count: false # Missing data **in HTA** ### Selection models: MNAR `\((e,c)\)` <span style="display:block; margin-top: -20px ;"></span> <center><img src=./img/missing_HTA3.png width='72%' title='INCLUDE TEXT HERE'></center> <span style="display:block; margin-top: 11px ;"></span> - `\(\class{olive}{m_{ei}\sim\dbern(\pi_{ei}); \qquad \logit(\pi_{ei})=\gamma_{e0} + \sum_{k=1}^K \gamma_{ek}x_{eik} + \gamma_{eK+1}e_i;} \class{blue}{\quad \gamma_{eK+1}\sim\style{font-family:inherit;}{\text{Informative Prior}}}\)` - `\(\class{orange}{m_{ci}\sim\dbern(\pi_{ci}); \qquad \logit(\pi_{ci})=\gamma_{c0} + \sum_{h=1}^H \gamma_{ch}x_{cih} + \gamma_{cH+1}c_i;} \class{blue}{\quad \gamma_{cK+1}\sim\style{font-family:inherit;}{\text{Informative Prior}}}\)` --- # Motivating example: MenSS trial - The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC - QALYs calculated from utilities (EQ-5D 3L) - Total costs calculated from different components (no baseline) -- ### Partially observed data <center><img src=./img/tab_menss.png width='75%' title='INCLUDE TEXT HERE'></center> --- count: # Motivating example: MenSS trial - The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC - QALYs calculated from utilities (EQ-5D 3L) - Total costs calculated from different components (no baseline) ### Skewness and "structural values" <span style="display:block; margin-top: -30px ;"></span> <center><img src=./img/menss_data.png width='48%' title='INCLUDE TEXT HERE'></center> --- # Modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Gabrio et al (2018)](https://pubmed.ncbi.nlm.nih.gov/30565727/)] 1. **Bivariate Normal** - Simpler and closer to "standard" frequentist models - Accounts for .red65blue[correlation between QALYs and costs] <center><img src=./img/modelling_missing1.png width='75%' title='INCLUDE TEXT HERE'></center> --- count: false # Modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Gabrio et al (2018)](https://pubmed.ncbi.nlm.nih.gov/30565727/)] 1. **Bivariate Normal** - Simpler and closer to "standard" frequentist models - Accounts for .red65blue[correlation between QALYs and costs] <span style="display:block; margin-top: -10px ;"></span> 2. **Beta-Gamma** - Account for .red65blue[correlation between outcomes] **and** model the relevant ranges: QALYs `\(\in (0,1)\)` and costs `\(\in (0,\infty)\)` - **But**: needs to rescale the observed data `\(\class{myblue}{e^*_{it}=(e_{it}-\epsilon)}\)` to avoid spikes at 1 <center><img src=./img/modelling_missing2.png width='75%' title='INCLUDE TEXT HERE'></center> --- count: false # Modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Gabrio et al (2018)](https://pubmed.ncbi.nlm.nih.gov/30565727/)] 1. **Bivariate Normal** - Simpler and closer to "standard" frequentist models - Accounts for .red65blue[correlation between QALYs and costs] <span style="display:block; margin-top: -10px ;"></span> 2. **Beta-Gamma** - Account for .red65blue[correlation between outcomes] **and** model the relevant ranges: QALYs `\(\in (0,1)\)` and costs `\(\in (0,\infty)\)` - **But**: needs to rescale the observed data `\(\class{myblue}{e^*_{it}=(e_{it}-\epsilon)}\)` to avoid spikes at 1 <span style="display:block; margin-top: -10px ;"></span> 3. **Hurdle model** - Model `\(e_{it}\)` as a .blue[**mixture**] to account for .red65blue[correlation between outcomes] + relevant ranges + .olive[structural values] - May expand further to account for partially observed baseline utilities `\(u_{0it}\)` (needs untestable assumptions!) <center><img src=./img/modelling_missing4.png width='75%' title='INCLUDE TEXT HERE'></center> --- count: false # Modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Gabrio et al (2018)](https://pubmed.ncbi.nlm.nih.gov/30565727/)] 1. **Bivariate Normal** - Simpler and closer to "standard" frequentist models - Accounts for .red65blue[correlation between QALYs and costs] <span style="display:block; margin-top: -10px ;"></span> 2. **Beta-Gamma** - Account for .red65blue[correlation between outcomes] **and** model the relevant ranges: QALYs `\(\in (0,1)\)` and costs `\(\in (0,\infty)\)` - **But**: needs to rescale the observed data `\(\class{myblue}{e^*_{it}=(e_{it}-\epsilon)}\)` to avoid spikes at 1 <span style="display:block; margin-top: -10px ;"></span> 3. **Hurdle model** - Model `\(e_{it}\)` as a .blue[**mixture**] to account for .red65blue[correlation between outcomes] + relevant ranges + .olive[structural values] - May expand further to account for partially observed baseline utilities `\(u_{0it}\)` (needs untestable assumptions!) <center><img src=./img/modelling_missing5.png width='75%' title='INCLUDE TEXT HERE'></center> --- count: false # Modelling .alignright[<svg viewBox="0 0 384 512" xmlns="http://www.w3.org/2000/svg" style="height:1em;fill:currentColor;position:relative;display:inline-block;top:.1em;"> <g label="icon" id="layer6" groupmode="layer"> <path id="path2" d="M 120.19265,177.73779 C 123.18778,77.35076 64.277527,63.999998 64.277527,63.999998 v 31.26245 C 40.834519,83.611374 18.32863,81.929634 18.32863,81.929634 V 337.10903 c 0,0 98.10414,-11.41744 98.10414,84.40952 0,0 36.58424,-153.37442 248.86103,26.48145 0,-61.59342 0.37757,-216.93925 0.37757,-268.28471 C 169.9561,37.131382 120.1931,177.73779 120.1931,177.73779 Z m 187.20631,173.82056 -12.37599,-97.65441 h -0.448 l -40.72819,97.65441 h -17.55994 l -38.9362,-97.65441 h -0.448 l -14.17589,97.65441 h -43.87514 l 28.8015,-169.61925 h 43.42716 l 34.43518,90.6496 36.46566,-90.6496 h 43.87513 l 25.6817,169.61925 h -44.13938 z" style="stroke-width:0.0675239"></path> </g></svg> [Gabrio et al (2018)](https://pubmed.ncbi.nlm.nih.gov/30565727/)] 1. **Bivariate Normal** - Simpler and closer to "standard" frequentist models - Accounts for .red65blue[correlation between QALYs and costs] <span style="display:block; margin-top: -10px ;"></span> 2. **Beta-Gamma** - Account for .red65blue[correlation between outcomes] **and** model the relevant ranges: QALYs `\(\in (0,1)\)` and costs `\(\in (0,\infty)\)` - **But**: needs to rescale the observed data `\(\class{myblue}{e^*_{it}=(e_{it}-\epsilon)}\)` to avoid spikes at 1 <span style="display:block; margin-top: -10px ;"></span> 3. **Hurdle model** - Model `\(e_{it}\)` as a .blue[**mixture**] to account for .red65blue[correlation between outcomes] + relevant ranges + .olive[structural values] - May expand further to account for partially observed baseline utilities `\(u_{0it}\)` (needs untestable assumptions!) <center><img src=./img/modelling_missing6.png width='75%' title='INCLUDE TEXT HERE'></center> --- # Bayesian multiple imputation (MAR) <span style="display:block; margin-top: -5px ;"></span> <center><img src=./img/results.png width='69%' title='INCLUDE TEXT HERE'></center> --- # `missingHE` ## A `R` package to deal with missing data in HTA **Objectives**: Run a set of complex models to account for different level of complexity and missingness <center><img src=./img/missingHE.png width='80%' title=''></center> <span style="display:block; margin-top: 30px ;"></span> <svg viewBox="0 0 496 512" xmlns="http://www.w3.org/2000/svg" style="position:relative;display:inline-block;top:.1em;fill:black;height:0.8em;"> [ comment ] <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [GitHub repository](https://github.com/giabaio/missingHE) --- # Conclusions - A full Bayesian approach to handling missing data extends standard "imputation methods" - Can consider MAR and MNAR with relatively little expansion to the basic model -- - Particularly helpful in cost-effectiveness analysis, to account for - Asymmetrical distributions for the main outcomes - Correlation between costs & benefits - Structural values (eg spikes at 1 for utilities or spikes at 0 for costs) -- - Need specialised software + coding skills - `R` package `missingHE` to implement a set of general models ```r > priormodel<-list ("mu.prior.e"=mu.prior.e,"delta.prior.e"=delta.prior.e) > run_model(data=data, model.eff=e~1, model.cost=c~1, + dist_e="norm",dist_c="norm",type="MNAR_eff",stand=FALSE, + program="JAGS",forward=FALSE,prob=c(0.05,0.95),n.chains=2,n.iter =20000, + n.burnin=floor(20000/2),inits=NULL,n.thin=1,save_model=FALSE,prior=prior + ) ``` - Link up with the "`R-HTA`-verse" - Other packages that can be used to analyse/post-process the output of economic models - [`BCEA`](http://www.statistica.it/gianluca/software/bcea), [`survHE`](http://www.statistica.it/gianluca/software/survhe), [`heemod`](https://cran.r-project.org/web/packages/heemod/vignettes/a_introduction.html), ... --- # Where can I find more, you ask?... [https://r-hta.org/](https://r-hta.org/) <iframe frameborder="no" src="https://r-hta.org/" style=" position: fixed; top: 30px; bottom: 0px; right: 0px; width: 200%; border: none; margin: 0; padding: 0; overflow: hidden; z-index: 999999; height: 100%; ms-transform: scale(0.45); -moz-transform: scale(0.45); -o-transform: scale(0.45); -webkit-transform: translate(+50%, -50%); transform: translate(+50%, -50%); <!-- -webkit-transform: scale(0.45); transform: scale(0.70); --> "> </iframe> --- exclude: true # References Baio, G. (2012). _Bayesian Methods in Health Economics_. Boca Raton, FL: Chapman Hall, CRC. ISBN: 1439895554. DOI: [10.1201/b13099](https://doi.org/10.1201%2Fb13099). URL: [http://www.statistica.it/gianluca/book/bmhe](http://www.statistica.it/gianluca/book/bmhe). Baio, G. (2020b). "survHE: Survival analysis for health economic evaluation and cost-effectiveness modelling". In: _Journal of Statistical Software_ 95.14, pp. 1-47. DOI: [10.18637/jss.v095.i14](https://doi.org/10.18637%2Fjss.v095.i14). --- class: thankyou-michelle