Efficient computations for the expected value of information in health economic evaluations

Gianluca Baio
University College London
Department of Statistical Science

g.baio@ucl.ac.uk
(Joint work with Anna Heath and Ioanna Manolopoulou)

The Fifth Workshop on Bayesian Inference for Latent Gaussian Models with Applications Bath, 14 September 2016

Outline of the talk

Health economic evaluation

1. What is it?
2. How does it work?
3. Uncertainty analysis

Outline of the talk

Health economic evaluation

1. What is it?
2. How does it work?
3. Uncertainty analysis

Value of information

1. Expected Value of Perfect Information (simple)
2. Expected Value of Perfect Partial Information (complex)
3. EVPPI as a regression problem

Outline of the talk

Health economic evaluation

1. What is it?
2. How does it work?
3. Uncertainty analysis

Value of information

1. Expected Value of Perfect Information (simple)
2. Expected Value of Perfect Partial Information (complex)
3. EVPPI as a regression problem

How to make your life miserable to (eventually) have a better life...

1. EVPPI as a regression problem - but faster
2. Spatial structure + reduction dimensionality
3. Examples
4. Conclusions

Health economic evaluation - What is it?

- Objective: Combine costs \& benefits of a given intervention into a rational scheme for allocating resources
- Rational decision-making is effected through the comparison of expected utilities \Rightarrow monetary net benefit

Health economic evaluation - What is it?

- Objective: Combine costs \& benefits of a given intervention into a rational scheme for allocating resources
- Rational decision-making is effected through the comparison of expected utilities \Rightarrow monetary net benefit
- Costs and benefits need to be modelled jointly
- Strong positive correlation - effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
- Negative correlation - more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.

Health economic evaluation - What is it?

- Objective: Combine costs \& benefits of a given intervention into a rational scheme for allocating resources
- Rational decision-making is effected through the comparison of expected utilities \Rightarrow monetary net benefit
- Costs and benefits need to be modelled jointly
- Strong positive correlation - effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
- Negative correlation - more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
- Often needs to go "beyond RCTs"
- Comparator(s) in the trial may not reflect standard of care
- Limited follow up /small sample size / poor external validity
- Uses "decision-analytic" models instead
- Describe full care management pathway
- Can combine individual- and aggregate level data
- Models include many relevant parameters

Decision-analytic model — HIV test (Welton et al 2012) [9] m C
 $t=0$: Targeted testing (high risk groups only)

Parameters: $\boldsymbol{\theta}=(a, b, c, d, e, f, g, h)$
Utility: $\mathrm{NB}_{0}(\boldsymbol{\theta})=[a c(1-f)+b d(1-g)] B-[a(1-c f)+b(1-d g)] C$

Decision-analytic model - HIV test (Welton et al 2012) [9] m C C
 $t=1$: Universal testing

Risk group?
HIV infection?
Already diagnosed?
(Benefit, Costs)

Parameters: $\boldsymbol{\theta}=(a, b, c, d, e, f, g, h)$
Utility: $\mathrm{NB}_{1}(\boldsymbol{\theta})=[a c(1-f)+b d(1-g)+(1-a-b) e(1-h)] B-[a(1-c f)+b(1-d g)+(1-a-b)(1-e h)] C$

Health economic evaluation — How does it work?

	Parameters simulations			
Iter $/ \mathrm{n}$	a	b	\ldots	h
1	0.365	0.076	\ldots	0.162
2	0.421	0.024	\ldots	0.134
3	0.125	0.017	\ldots	0.149
4	0.117	0.073	\ldots	0.120
5	0.481	0.008	\ldots	0.191
6	0.163	0.127	\ldots	0.004
\ldots			\ldots	
1000	0.354	0.067		\cdots

- Characterise uncertainty in the model parameters
- In a full Bayesian setting, these are draws from the joint posterior distribution of $\boldsymbol{\theta}$
- In a frequentist setting, these are typically Monte Carlo draws from a set of univariate distributions that describe some level of uncertainty around MLEs (two-step/hybrid)

Health economic evaluation - How does it work?

	Parameters simulations				Expected utility		
Iter $/ \mathrm{n}$	a	b	\ldots	h	$\mathrm{NB}_{0}(\boldsymbol{\theta})$	$\mathrm{NB}_{1}(\boldsymbol{\theta})$	
1	0.365	0.076	\ldots	0.162	19214751	19647706	
2	0.421	0.024	\ldots	0.134	17165526	17163407	
3	0.125	0.017	\ldots	0.149	18710928	16458433	
4	0.117	0.073	\ldots	0.120	16991321	18497648	
5	0.481	0.008	\ldots	0.191	19772898	18662329	
6	0.163	0.127	\ldots	0.004	17106136	18983331	
\ldots			\ldots				
1000	0.354	0.067	\ldots	0.117	18043921		
				Average	18659238	1950805	

- Uncertainty in the parameters induces a distribution of decisions (based on the net benefits)
- In each parameters configuration can identify the optimal strategy
- Averaging over the uncertainty in $\boldsymbol{\theta}$ provides the overall optimal decision, given current uncertainty ($=$ choose the intervention associated with highest expected utility)

Health economic evaluation — How does it work?

IIC

Iter/n	Parameters simulations				Expected utility		Maximum net benefit	$\begin{aligned} & \text { Opportunity } \\ & \text { loss } \end{aligned}$
	a	b		h	$\mathrm{NB}_{0}(\boldsymbol{\theta})$	$\mathrm{NB}_{1}(\boldsymbol{\theta})$		
1	0.365	0.076	. .	0.162	19214751	19647706	19647706	-
2	0.421	0.024	.	0.134	17165526	17163407	17165526	2119.3
3	0.125	0.017	. .	0.149	18710928	16458433	18710928	2252495.5
4	0.117	0.073	.	0.120	16991321	18497648	18497648	-
5	0.481	0.008	. .	0.191	19772898	18662329	19772898	1110569.3
6	0.163	0.127		0.004	17106136	18983331	18983331	-
. .								
1000	0.354	0.067		0.117	18043921	16470805	18043921	1573116.0
				verage	18659238	19515004	19741589	226585

- Summarise uncertainty in the decision, eg via the Expected Value of "Perfect" Information (EVPI)
- Defined as the average Opportunity Loss
- Can also be computed as the difference between the average maximum expected utility under "perfect" information and the maximum expected utility overall - in formula:

$$
\mathrm{EVPI}=\mathrm{E}_{\boldsymbol{\theta}}\left[\max _{t} \mathrm{NB}_{t}(\boldsymbol{\theta})\right]-\max _{t} \mathrm{E}_{\boldsymbol{\theta}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- First, consider the expected utility (EU) if we were able to learn ϕ but not ψ

$$
\mathrm{E}_{\boldsymbol{\psi} \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- If we knew ϕ perfectly, best decision $=$ the maximum of this EU

$$
\max _{t} \mathrm{E}_{\psi \mid \phi}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- Of course we cannot learn ϕ perfectly, so take the expected value

$$
\mathrm{E}_{\phi}\left[\max _{t} \mathrm{E}_{\psi \mid \phi}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- And compare this with the maximum expected utility overall

$$
\mathrm{E}_{\boldsymbol{\phi}}\left[\max _{t} \mathrm{E}_{\psi \mid \phi}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right]-\max _{t} \mathrm{E}_{\boldsymbol{\theta}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- First, consider the expected utility (EU) if we were able to learn ϕ
- If we knew ϕ perfectly, best decision = the maximum of this EU
- Of course we cannot learn ϕ perfectly, so take the expected value
- And compare this with the maximum expected utility overall
- This is the EVPPI!

$$
\mathrm{EVPPI}=\mathrm{E}_{\boldsymbol{\phi}}\left[\max _{t} \mathrm{E}_{\boldsymbol{\psi} \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right]-\max _{t} \mathrm{E}_{\boldsymbol{\theta}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]
$$

Expected Value of Partial Information

- $\boldsymbol{\theta}=$ all the model parameters; can be split into two subsets
- The "parameters of interest" ϕ, e.g. prevalence of a disease, HRQL measures, length of stay in hospital, ...
- The "remaining parameters" ψ, e.g. cost of treatment with other established medications,
- We are interested in quantifying the value of gaining more information on ϕ, while leaving the current level of uncertainty on ψ unchanged
- In formulæ:
- First, consider the expected utility (EU) if we were able to learn ϕ
- If we knew ϕ perfectly, best decision = the maximum of this EU
- Of course we cannot learn ϕ perfectly, so take the expected value
- And compare this with the maximum expected utility overall
- This is the EVPPI!

$$
\operatorname{EVPPI}=\mathrm{E}_{\phi}\left[\max _{t} \mathrm{E}_{\psi \mid \phi}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right] \text { - } \max _{t} \mathrm{E}_{\theta}\left[\mathrm{NB}_{t}(\theta)\right]
$$

- That's the difficult part! Can do nested Monte Carlo, but takes for ever to get accurate results, so nobody bothers...

EVPPI as a regression problem

- Can model as a regression problem

$$
\begin{aligned}
\mathrm{NB}_{t}(\boldsymbol{\theta}) & =\mathrm{E}_{\psi \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]+\varepsilon, \quad \text { with } \varepsilon \sim \operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right) \\
& =g_{t}(\phi)+\varepsilon
\end{aligned}
$$

"Data": simulations for $\mathrm{NB}_{t}(\boldsymbol{\theta})$ as "response" simulations for ϕ as "covariates"

a	b	c	.	f	g	h	$\mathrm{NB}_{0}(\boldsymbol{\theta})$	$\mathrm{NB}_{1}(\boldsymbol{\theta})$
0.365	0.076	0.243	. .	0.622	0.001	0.162	19214751	19647706
0.421	0.024	0.115		0.519	0.010	0.134	17165526	17163407
0.125	0.017	0.420	. .	0.482	0.007	0.149	18710928	16458433
0.117	0.073	0.419	. .	0.317	0.003	0.120	16991321	18497648
0.481	0.008	0.176		0.497	0.004	0.191	19772898	18662329
0.163	0.127	0.227	. \cdot	0.613	0.083	0.004	17106136	18983331
0.354	0.067	0.318	\ldots	0.519	0.063	0.117	18043921	16470805
		ariat					"response"	"response"

Strong and Oakley (2014) [7]

EVPPI as a regression problem

- Can model as a regression problem

$$
\begin{aligned}
\mathrm{NB}_{t}(\boldsymbol{\theta}) & =\mathrm{E}_{\psi \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]+\varepsilon, \quad \text { with } \varepsilon \sim \operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right) \\
& =g_{t}(\phi)+\varepsilon
\end{aligned}
$$

"Data": simulations for $\mathrm{NB}_{t}(\boldsymbol{\theta})$ as "response" simulations for ϕ as "covariates"

- Once the functions $g_{t}(\boldsymbol{\phi})$ are estimated, then can approximate

$$
\begin{aligned}
\mathrm{EVPPI} & =\mathrm{E}_{\boldsymbol{\phi}}\left[\max _{t} \mathrm{E}_{\boldsymbol{\psi} \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right]-\max _{t} \mathrm{E}_{\boldsymbol{\theta}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right] \\
& \approx \frac{1}{S} \sum_{s=1}^{S} \max _{t} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)-\max _{t} \frac{1}{S} \sum_{s=1}^{S} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)
\end{aligned}
$$

EVPPI as a regression problem

- Can model as a regression problem

$$
\begin{aligned}
\mathrm{NB}_{t}(\boldsymbol{\theta}) & =\mathrm{E}_{\psi \mid \phi}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]+\varepsilon, \quad \text { with } \varepsilon \sim \operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right) \\
& =g_{t}(\phi)+\varepsilon
\end{aligned}
$$

"Data": simulations for $\mathrm{NB}_{t}(\boldsymbol{\theta})$ as "response" simulations for ϕ as "covariates"

- Once the functions $g_{t}(\boldsymbol{\phi})$ are estimated, then can approximate

$$
\begin{aligned}
\mathrm{EVPPI} & =\mathrm{E}_{\boldsymbol{\phi}}\left[\max _{t} \mathrm{E}_{\boldsymbol{\psi} \mid \boldsymbol{\phi}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right]\right]-\max _{t} \mathrm{E}_{\boldsymbol{\theta}}\left[\mathrm{NB}_{t}(\boldsymbol{\theta})\right] \\
& \approx \frac{1}{S} \sum_{s=1}^{S} \max _{t} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)-\max _{t} \frac{1}{S} \sum_{s=1}^{S} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)
\end{aligned}
$$

- NB: $g_{t}(\phi)$ can be complex, so need to use flexible regression methods
- GAMs are very fast, but only work if number of important parameters $P \leq 5$
- If $P>5$, can use Gaussian Process regression

EVPPI via GP regression

Model

$$
\left(\begin{array}{c}
\mathrm{NB}_{t}\left(\boldsymbol{\theta}_{1}\right) \\
\mathrm{NB}_{t}\left(\boldsymbol{\theta}_{2}\right) \\
\vdots \\
\mathrm{NB}_{t}\left(\boldsymbol{\theta}_{S}\right)
\end{array}\right):=\mathbf{N B}_{t} \sim \operatorname{Normal}\left(\boldsymbol{H} \boldsymbol{\beta}, \boldsymbol{C}_{\operatorname{Exp}}+\sigma_{\varepsilon}^{2} \boldsymbol{I}\right)
$$

$\boldsymbol{H}=\left(\begin{array}{cccc}1 & \phi_{11} & \cdots & \phi_{1 P} \\ 1 & \phi_{21} & \cdots & \phi_{2 P} \\ \vdots & & \ddots & \\ 1 & \phi_{S 1} & & \phi_{S P}\end{array} \quad\right.$ and $\quad \mathcal{C}_{\operatorname{Exp}}(r, s)=\sigma^{2} \exp \left[\sum_{p=1}^{P}\left(\frac{\phi_{r p}-\phi_{s p}}{\delta_{p}}\right)^{2}\right]$

- Parameters: $\boldsymbol{\beta}, \delta, \sigma^{2}, \sigma_{\varepsilon}^{2}$
- Very flexible structure - good approximation level
- Can use conjugate priors + numerical optimisation, but can still be very slow - computational cost in the order of S^{3} (involves inversion of a dense covariance matrix)

Strong and Oakley (2014) [7]

EVPPI via GP regression - but faster

EVPPI via GP regression - but faster

(1) Build from ideas in spatial statistics and use a Matérn covariance function

$$
\mathcal{C}_{\mathrm{M}}(r, s)=\frac{\sigma^{2}}{\Gamma(\nu) 2^{\nu-1}}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)^{\nu} \mathrm{K}_{\nu}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)
$$

- Fewer parameters, but still implies a dense covariance matrix
- But: can use efficient algorithms to solve Stochastic Partial Differential Equations (SPDE) to approximate it — with computational cost $\propto S^{3 / 2}$!

EVPPI via GP regression - but faster

(1) Build from ideas in spatial statistics and use a Matérn covariance function

$$
\mathcal{C}_{\mathrm{M}}(r, s)=\frac{\sigma^{2}}{\Gamma(\nu) 2^{\nu-1}}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)^{\nu} \mathrm{K}_{\nu}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)
$$

- Fewer parameters, but still implies a dense covariance matrix
- But: can use efficient algorithms to solve Stochastic Partial Differential Equations (SPDE) to approximate it — with computational cost $\propto S^{3 / 2}$!
(2) Re-formulate the model as

$$
\begin{aligned}
\mathbf{N B}_{t} & \sim \operatorname{Normal}\left(\boldsymbol{H} \boldsymbol{\beta}, \mathcal{C}_{\mathrm{M}}+\sigma_{\varepsilon}^{2} \boldsymbol{I}\right) \\
& \sim \operatorname{Normal}\left(\boldsymbol{H} \boldsymbol{\beta}+f(\boldsymbol{\omega}), \sigma_{\varepsilon}^{2} \boldsymbol{I}\right)
\end{aligned}
$$

- $f(\boldsymbol{\omega})$ are a set of "spatially structured" effects, with $\boldsymbol{\omega} \sim \operatorname{Normal}\left(0, \boldsymbol{Q}^{-1}(\xi)\right)$
- $Q(\xi)$ is a sparse precision matrix determined by the SPDE solution

EVPPI via GP regression - but faster

(1) Build from ideas in spatial statistics and use a Matérn covariance function

$$
\mathcal{C}_{\mathrm{M}}(r, s)=\frac{\sigma^{2}}{\Gamma(\nu) 2^{\nu-1}}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)^{\nu} \mathrm{K}_{\nu}\left(\kappa\left\|\boldsymbol{\phi}_{r}-\boldsymbol{\phi}_{s}\right\|\right)
$$

- Fewer parameters, but still implies a dense covariance matrix
- But: can use efficient algorithms to solve Stochastic Partial Differential Equations (SPDE) to approximate it — with computational cost $\propto S^{3 / 2}$!
(2) Re-formulate the model as

$$
\begin{aligned}
\mathbf{N B}_{t} & \sim \operatorname{Normal}\left(\boldsymbol{H} \boldsymbol{\beta}, \mathcal{C}_{\mathrm{M}}+\sigma_{\varepsilon}^{2} \boldsymbol{I}\right) \\
& \sim \operatorname{Normal}\left(\boldsymbol{H} \boldsymbol{\beta}+f(\boldsymbol{\omega}), \sigma_{\varepsilon}^{2} \boldsymbol{I}\right)
\end{aligned}
$$

- $f(\boldsymbol{\omega})$ are a set of "spatially structured" effects, with $\boldsymbol{\omega} \sim \operatorname{Normal}\left(0, \boldsymbol{Q}^{-1}(\xi)\right)$
- $Q(\xi)$ is a sparse precision matrix determined by the SPDE solution
(3) Crucially, if we set a sparse Gaussian prior on $\boldsymbol{\beta}$, this is a Latent Gaussian model \Rightarrow can be estimated using super-fast Integrated Nested Laplace Approximation (INLA)

Heath et al (2016) [3]; Lindgren et al (2011) [4]; Rue et al (2009) [5]

Lost in space

- In a "proper" spatial problem, data are observed at a bivariate grid of points
- Points that are closer tend to be more correlated than points further apart
- The INLA-SPDE procedure builds a grid approximation of the underlying bidimensional space
- Points not on the grid are estimated by interpolation - deriving a full surface

Lost in space

- In a "proper" spatial problem, data are observed at a bivariate grid of points
- Points that are closer tend to be more correlated than points further apart
- The INLA-SPDE procedure builds a grid approximation of the underlying bidimensional space
- Points not on the grid are estimated by interpolation - deriving a full surface
- In our case, data are observed on a high-dimensional space, with no proper "spatial" interpretation!
- Need to use some form of dimensionality reduction to project the P-dimensional space of ϕ to a 2-dimensional space
- Simple solution: use PCA to preserve Euclidean distances and thus capture the "spatial" correlation across the elements of ϕ
- Even better, regression-based dimension reduction method: Principal Fitted Components

Lost in space

- In a "proper" spatial problem, data are observed at a bivariate grid of points
- Points that are closer tend to be more correlated than points further apart
- The INLA-SPDE procedure builds a grid approximation of the underlying bidimensional space
- Points not on the grid are estimated by interpolation - deriving a full surface
- In our case, data are observed on a high-dimensional space, with no proper "spatial" interpretation!
- Need to use some form of dimensionality reduction to project the P-dimensional space of ϕ to a 2-dimensional space
- Simple solution: use PCA to preserve Euclidean distances and thus capture the "spatial" correlation across the elements of ϕ
- Even better, regression-based dimension reduction method: Principal Fitted Components

NB: All methods implemented in the R package BCEA (Bayesian Cost-Effectiveness Analysis: http://www.statistica.it/gianluca/BCEA)

[^0]
Principal Fitted Components

- Objective: find a sufficient dimensionality reduction
- Estimate the function $R(\phi): P \rightarrow d$ so that $\mathbf{N B}_{t} \Perp \phi \mid R(\phi)$
- "Project" the P-dimensional information contained in ϕ to the d-dimensional function $R(\cdot)$
- Ideally, $d \ll P$ - in fact, would like $d \leq 2$

Principal Fitted Components

- Objective: find a sufficient dimensionality reduction
- Estimate the function $R(\phi): P \rightarrow d$ so that $\mathbf{N B}_{t} \Perp \phi \mid R(\phi)$
- "Project" the P-dimensional information contained in ϕ to the d-dimensional function $R(\cdot)$
- Ideally, $d \ll P$ - in fact, would like $d \leq 2$
- "Inverse regression" model

$$
\phi=\boldsymbol{\mu}+\mathbf{\Upsilon} \boldsymbol{f}\left(\mathbf{N B}_{t}\right)+\boldsymbol{\epsilon}
$$

with

- $\boldsymbol{\mu}=$ intercept
- $\boldsymbol{\Upsilon}=P \times d$ dimensionality reduction matrix
- $\boldsymbol{f}\left(\mathbf{N B}_{t}\right)=$ vector-valued function of the "response"
- $\boldsymbol{\epsilon}=$ error term

Principal Fitted Components

- Objective: find a sufficient dimensionality reduction
- Estimate the function $R(\boldsymbol{\phi}): P \rightarrow d$ so that $\quad \mathbf{N B}_{t} \Perp \boldsymbol{\phi} \mid R(\boldsymbol{\phi})$
- "Project" the P-dimensional information contained in ϕ to the d-dimensional function $R(\cdot)$
- Ideally, $d \ll P$ - in fact, would like $d \leq 2$
- "Inverse regression" model

$$
\phi=\boldsymbol{\mu}+\boldsymbol{\Upsilon} \boldsymbol{f}\left(\mathbf{N B}_{t}\right)+\boldsymbol{\epsilon}
$$

with

- $\boldsymbol{\mu}=$ intercept
- $\boldsymbol{\Upsilon}=P \times d$ dimensionality reduction matrix
- $\boldsymbol{f}\left(\mathbf{N B}_{t}\right)=$ vector-valued function of the "response"
- $\boldsymbol{\epsilon}=$ error term
- Main advantages
- Computational cost is negligible
- Can use model-fitting statistics (eg AIC) to determine the "best" model for given choices of $d(=2,3, \ldots)$
- NB: if the AIC suggests $d>2$ then EVPPI estimates likely to be biased!

In a nutshell...

(1) Make the model structure more complex, by assuming that the EVPPI is estimated by a linear predictor ("fixed" effects) + a spatially structured ("random" effect) component, accounting for the correlation among parameters
(2) Find the best performing inverse regression model by AIC (as a failsafe measure) \& compute the PFC model with 2 dimensions
(3) Use the projections as the "spatial location" for the net benefit values and estimate the Matérn GP via SPDE
(4) Use INLA to estimate the posterior distribution for the model parameters
(5) Compute the fitted values $\hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)$
(6 Use the fitted values to calculate the estimate of the EVPPI as

$$
\widehat{\mathrm{EVPPI}}=\frac{1}{S} \sum_{s=1}^{S} \max _{t} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)-\max _{t} \frac{1}{S} \sum_{s=1}^{S} \hat{g}_{t}\left(\boldsymbol{\phi}_{s}\right)
$$

Examples - SAVI

SAVI example

Estimated values

Running time for a single value of k

Sheffield Accelerated Value of Information [6]

Examples - Vaccine

Computational time

Estimated values

Running time for a single value of k

Breaking bad...

Breast cancer screening (Welton et al 2008) [8]

- Multi-decision model developed for the UK setting, with 4 interventions
- Complex evidence synthesis for 6 parameters - highly structured!

- Can relatively easily modify the basic structure of the model, e.g. include interaction terms to make $\boldsymbol{H} \boldsymbol{\beta}$ non-linear

$$
\beta_{0}+\beta_{1} \phi_{1 s}+\beta_{2} \phi_{2 s}+\beta_{3} \phi_{3 s}+\beta_{4} \phi_{1 s} \phi_{2 s}+\beta_{5} \phi_{1 s} \phi_{3 s}+\beta_{6} \phi_{2 s} \phi_{3 s}
$$

Baio et al (2016) [1]

Conclusions

uncertainty

- Vol methods are theoretically valid (ideal?) to quantify decision uncertainty
- Directly related to research prioritisation
- Address the issue of uncertainty vs consequences
- But: their application has been hindered by the computational cost involved in calculating the EVPPI
- Methods based on non-parametric regression to calculate the EVPPI are efficient, but in some cases still computationally expensive
- Can overcome these limitations by drawing on methods from spatial statistics
- Efficient algorithm - around 10 seconds for 1000 PSA samples in the basic formulation
- Relatively easy (and not too expensive!) to use more complex formulation to deal with more complex cases
- Implemented in BCEA - practitioners can use them in a relatively straightforward way!

References

[1] G. Baio, A. Berardi, and A. Heath. Bayesian Cost Effectiveness Analysis with the R package BCEA. Springer, forthcoming.
[2] G. Baio and P. Dawid. Probabilistic sensitivity analysis in health economics. Statistical methods in medical research, Sep 2011.
[3] A Heath, I Manolopoulou, and G Baio. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation. Statistics in Medicine, May 2016.
[4] F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423-498, 2011.
[5] H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal the Royal Statistical Society, Series B, 71:319-392, 2009.
[6] M. Strong, P. Breeze, C. Thomas, and A. Brennan. SAVI - Sheffield Accelerated Value of Information, Release version 1.013 (2014-12-11), 2014.
[7] M. Strong, J. Oakley, and A. Brennan. Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample A Nonparametric Regression Approach. Medical Decision Making, 34(3):311-326, 2014.
[8] N. Welton, A. Ades, D. Caldwell, and T. Peters. Research prioritization based on expected value of partial perfect information: a case-study on interventions to increase uptake of breast cancer screening. Journal of the Royal Statistical Society Series A, 171:807-841, 2008.
[9] N. Welton, A. Sutton, N. Cooper, K. Abrams, and A. Ades. Evidence Synthesis for Decision Making in Healthcare. John Wiley \& Sons, Ltd., Chichester, United Kingdom, 2012.

Thank you!

[^0]: Baio et al (2016) [1]

