Dynamic Bayesian Markov model for health economic evaluations of interventions in infectious disease

Gianluca Baio

(Joint work with Katrin Haeussler and Ardo van den Hout)

University College London Department of Statistical Science

g.baio@ucl.ac.uk

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/ http://www.statistica.it/gianluca https://github.com/giabaio

Health Economics Research Centre Seminars University of Oxford

Tuesday 14 January 2020

Before I begin:

• My personal view of the world:

Statisticians should be in charge of everything.

• And actually, come to think about it:

Bayesian Statisticians should be in charge of all Statisticians.

• So I probably will be very annoying in the next hour or so... 1

¹But luckily no non-Bayesian Statistician has been harmed in the making of this slides

Outline

1. Health technology assessment (HTA)

- What is it? How does it work?
- HTA for infectious diseases

2. Motivating example

- HPV vaccination model
- Complex structure & uncertain inputs...

3. Toy example (simulations)

- ODE-based models vs discrete time approximations
- ODE vs Bayesian ODE vs Dynamic Bayesian MM
- Results

4. HPV model

- Epidemiological results
- Cost-effectiveness analysis

5. Conclusions

Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Uncertainty analysis

- Assesses the impact of uncertainty (eg in parameters or model structure) on the economic results
- Mandatory in many jurisdictions (including NICE, in the UK)
 - Fundamentally Bayesian!

Statistical model

- Estimates relevant population parameters
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used
- Summarises the economic model by computing suitable measures of "cost-effectiveness"
- Dictates the best course of actions, given current evidence
- Standardised process

Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

- Assesses the impact of uncertainty (eg in parameters or model structure) on the economic results
- Mandatory in many jurisdictions (including NICE, in the UK)

- Estimates relevant population parameters
- Varies with the type of available data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and clinical benefits
- Varies with the type of available data & statistical model used
- given current evidence
- Standardised process

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

New Chemotherapy vs Old Chemotherapy

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources Cost effectiveness plane

BMM for HTA in infectious disease

HERC Seminar, 14 Jan 2020

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Cost Effectiveness Acceptability Curve

- In the UK, bodies such as NICE are responsible for guidance and advice (to DoH and NHS) on whether interventions should be publicly funded
- This applies to many types of health-care interventions
 - (First and foremost...) Pharmaceuticals
 - Behavioural change/complex interventions (e.g. mental health)

- ...

- Canada and Australia have very similar set-ups CADHTA and PBAC are almost exact counterparts to NICE
- Other jurisdictions (eg France, Italy, Spain) have slightly different (less formal?) processes — but there is a(n increasing) drive in following in NICE's footsteps
 - As of yesterday, Denmark has decided to adopt QALYs for CEAs...
 - (... unless/until Brexit breaks that too)

• But what about vaccines and interventions for infectious diseases?

- In the UK, appraisal of vaccines is under the remit of a different body (JCVI)
 - Since 2009/10, the Health Protection Regulation obliges the Health Secretary to ensure that recommendations for national vaccination programmes are based on an assessment demonstrating cost-effectiveness (assuming they have time left after all the fridges buying...)
- However, there are currently no vaccine-specific guidelines for developing clinical or cost-effectiveness evidence
 - Modelling for infectious disease arguably more complex than it is for "normal" pharmaceutical interventions
 - Compartmental models need to account for herd immunity and dynamic transmission
- Typical "compromise" (especially in industry!)
 - Epidemiologic component: up to standard
 - Usually based on ODEs and advanced mathematical modelling
 - Cost-effectiveness analysis: sub-optimal
 - (Economic) Modellers only access output of complex mathematical modelling and combines with ad-hoc procedures

Motivating example

Females compartment model: $S_f = 36$ health states Males compartment model: $S_m = 22$ health states

Cervical cancer module (blown up)

Lots of uncertainty in the model inputs...

- HPV transmission rate: crucial parameter, limited/inconclusive evidence available
 - Uniform distribution in [0;1] (Korostil et al, 2012)?
 - Per sex act: \sim 40% with a range of 5-100% (Dunne et al, 2006)?
 - Per partnership: \sim 42% with a range of 36-47% (Burchell et al, 2011)?
 - Affected by external factors (eg average- vs high-risk sexual behaviour)?
- Bayesian modelling useful to include expert opinion and relatively straightforward for (probabilistic) sensitivity analysis

Well — there's really no problem with ODEs-based dynamic transmission models. . . $\ensuremath{\mathsf{BUT}}$:

- They can be very computationally intensive
- Often requires specialised software (e.g. Berkeley Madonna), which the average Economic Modeller is most likely not familiar with

 Steps towards world domination no. 1: http://www.statistica.it/gianluca/teaching/r-hta-workshop/

- Orucially, because of the potential computational complexity, the process of uncertainty/probabilistic sensitivity analysis (PSA) is much less straightforward (then in "normal" HTAs)!
 - Notably, PSA is often conducted "retrospectively" using procedures such as Latin Hypercube Sampling or Monte Carlo sampling
- HTA models often involve very complex structures (usually more complex than standard "clinical" comparisons)
 - And this exhacerbates the potential for computational complexity...

Consider an infectious disease, e.g. HIV

• $\phi_{r,s}$ are the transition parameters, governing movements across the states

HERC Seminar, 14 Jan 2020

Consider an infectious disease, e.g. HIV

 $\phi_{r,s} = \rho_{r,s} = \text{transition rates}$ (continuous times)

Consider an infectious disease, e.g. HIV

 $\phi_{r,s} = \pi_{r,s} = \text{transition probabilities (in discrete consecutive times)}$

Modelling

Standard" ODE

- Solve ODE system to estimate the model parameters
- Characterise population dynamics & accounts for herd immunity
- Feed point estimate from the transmission model to the economic model to obtain the "best-case" scenario
- Re-run economic model for different configuration of the transmission model to do PSA

Bayesian ODE (BODE)

- ODE system embedded in wider Bayesian model typically including the economic component
- Directly allows for evidence synthesis and functional relationships across parameters
- Fully characterises population dynamics & accounts for herd immunity
- Gold standard when it can be used (as it may become very computationally intensive)
- Recent development (e.g. Stan) alleviates computational issues

Oynamic Bayesian Markov Model (BMM)

- Simplifies the temporal resolution and consider discrete time intervals
- Simpler to run and more in line with Economic Modeller's knowledge
- Can approximate population dynamics & account for herd immunity
- PSA comes from free as a byproduct of the estimation procedure

- A "standard" version of a Markov Model (MM) cannot account for population dynamics & herd immunity
 - In fact, MMs are popular in health economics to model chronic diseases (e.g. cardiovascular or cancer)
- Need to model the transition between Susceptible to Infected to vary over time
 - β = probability of pathogen transmission
 - ω = rate of contacts between susceptibles
 - $\phi_t = \frac{I_t}{N}$ = time-dependent pathogen prevalence (=infected/alive in a time interval)
 - $-\lambda_t = \beta \ddot{\omega} \phi_t$ = force of infection (varies with time & population composition)
- · Can approximate the underlying continuous transition to infection using

 $\pi_{1,2,t} = 1 - \exp(-\lambda_t)$

- The approximation can be gross due to competing risks and the assumption of uniformity for the event probabilities in the time intervals
- Can use short cycle lengths (potentially increase computational time)
- Does not need any specialised software (can be fitted using BUGS/JAGS and then post-processed in R — or even Excel)

Parameter	Description	Distribution BMM	Distribution BODE	Mean	95% interval
ω_{MH}	Partner acquisition rate (high-risk	Poisson-Gamma model	equivalent to BMM	9.10	[8.77;9.29]
ω_{ML}	Partner acquisition rate (low-risk males)	Poisson-Gamma model	equivalent to BMM	2.98	[2.82;3.12]
$^{\omega}FH$	Partner acquisition rate (high-risk females)	Poisson-Gamma model	equivalent to BMM	9.00	[8.71;9.26]
ω_{FL}	Partner acquisition rate (low-risk fe- males)	Poisson-Gamma model	equivalent to BMM	1.96	[1.86;2.09]
x	Proliferation parameter	Gamma(1111.1,111111.1)	Gamma(1111.1,111111.1)	0.01	[0.01;0.01]
β	STI transmission probability per partnership	Beta-Binomial model	equivalent to BMM	0.16	[0.15;0.16]
<i>π</i> 2,3	Transition parameter from state 2 to state 3	Beta(5119.2, 1279.8)	Gamma(25600,32000)	0.80	[0.79;0.81]
<i>π</i> _{3,4}	Transition parameter from state 3 to state 4	Beta(1842.66, 18631.34)	Gamma(2025,22500)	0.09	[0.09;0.09]
<i>π</i> 4,5	Transition parameter from state 4 to state 5	Beta(1535.96, 36863.04)	Gamma(1600,40000)	0.04	[0.04;0.04]
$\pi_{1,5}$	Transition parameter from state 1 to state 5	Beta(156.171, 312186.6)	Gamma(156.25,312500)	< 0.01	[<0.01;<0.01]
η	Probability of STI diagnosis	Beta-Binomial model	equivalent to BMM	0.90	[0.88;0.92]
σ	Screening probability	Beta-Binomial model	equivalent to BMM	0.90	[0.87:0.92]
α	Vaccine coverage parameter	Beta-Binomial model	equivalent to BMM	0.90	[0.87;0.92]
γ	Vaccine efficacy parameter	Beta-Binomial model	equivalent to BMM	0.90	[0.87;0.92]
cscreen	Unit cost of screening in \pounds	Lognormal(2.996, 0.693)	equivalent to BMM	25.39	[5.19;77.53]
cvac	Unit cost of vaccination in \pounds	Lognormal(5.011, 0.01)	equivalent to BMM	150.02	[147.14;152.98]
ctest	Unit cost of STI test in \pounds	Lognormal(2.996, 0.03)	equivalent to BMM	20.01	[18.83;21.19]
chlood	Unit cost of blood test in \pounds	Lognormal(3.401, 0.03)	equivalent to BMM	30	[28.26;31.79]
c_{treat}	Unit cost of treatment in \pounds	Lognormal(8.517, 0.015)	equivalent to BMM	4999.78	[4853.56;5149.24]
cdis	Unit cost of disease treatment in \pounds	Lognormal(9.210, 0.01)	equivalent to BMM	9999.95	[9802.97;10198.10]
c_{gp}	Unit cost of visit to general practitioner in \pounds	Lognormal(3.912, 0.02)	equivalent to BMM	50.01	[48.08;52.01]
u_2	Health utility of infected (min=0, max=1)	Beta(1469.3, 629.7)	equivalent to BMM	0.70	[0.68;0.72]
u_3	Health utility of asymptomatic (min=0, max=1)	Beta(1439.4, 959.6)	equivalent to BMM	0.60	[0.58;0.62]
u_4	Health utility of morbid (min=0, max=1)	Beta(629.7, 1469.3)	equivalent to BMM	0.30	[0.28;0.32]

- ODE model (EpiModel/deSolve): 1 hour 15 mins
- BODE model (WinBUGS+WBDiff): 1 hour 50 mins (MCMC using 2 chains) no issues with convergence
- BMM model (WinBUGS/JAGS): 9 mins / 2.5 mins (MCMC using 2 chains) no issues with convergence

NB: We chose to use more or less standard software, which was available/usable for/in R. Stan is likely to make the BODE faster to run (but its ODE solver was not fully implemented by the time we did this...)

HERC Seminar, 14 Jan 2020 13 / 16

Cost effectiveness plane Vaccination vs Status quo

Gianluca Baio (UCL)

BMM for HTA in infectious disease

BMM for HTA in infectious disease

HPV prevalence calibration

age

Results (HPV model)

year of follow-up

year of follow-up

year of follow-up

Gianluca Baio (UCL)

BMM for HTA in infectious disease

HERC Seminar, 14 Jan 2020

- ČINI

CINII cervoand — VIN

ValN

ValNIII anLSIL

- hncanc

Cost effectiveness plane Universal vs Female-only

- HTA of interventions for infectious disease typically characterised by
 - (More) complex underlying modelling
 - Need to account for specific features (e.g. population dynamics)
 - Substitution of the second state of the sec
- "Industry" standard to model transmission fit for purpose. But: wider economic modelling often miss out on important aspects
 - Full characterisation of uncertainty in model parameters and PSA
- Bayesian modelling and some simplifications (e.g. reduce temporal resolution/model structure) can be efficient
 - Arguably sub-optimal modelling (in some respects). But allows us to get where we need to be in a more straightforward way

Thank you!

