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Disclaimer...

Before I begin:

• My personal view of the world:

Statisticians should be in charge of everything.

• And actually, come to think about it:

Bayesian Statisticians should be in charge of all Statisticians.

• So I probably will be very annoying in the next hour or so. . . 1

1But luckily no non-Bayesian Statistician has been harmed in the making of this slides
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Outline

1. Health technology assessment (HTA)
– What is it? How does it work?
– HTA for infectious diseases

2. Motivating example
– HPV vaccination model
– Complex structure & uncertain inputs. . .

3. Toy example (simulations)
– ODE-based models vs discrete time approximations
– ODE vs Bayesian ODE vs Dynamic Bayesian MM
– Results

4. HPV model
– Epidemiological results
– Cost-effectiveness analysis

5. Conclusions
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Health technology assessment (HTA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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∆e = fe(θ)

∆c = fc(θ)

. . .

ICER = g(∆e,∆c)

EIB = h(∆e,∆c; k)

. . .

1. Estimation (base-case)

θ

yp(y | θ)

θ̂ = f(Y )

2. Probabilistic sensitivity analysis

⇒

θp(θ) ! g(θ̂)

Estimation & PSA (one stage)

θ

yp(y | θ)

p(θ) p(θ | y)
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Health technology assessment (HTA) “Two stage approach”

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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. . .

1. Estimation (base-case)

θ

yp(y | θ)

θ̂ = f(Y )

2. Probabilistic sensitivity analysis

⇒

θp(θ) ! g(θ̂)

Estimation & PSA (one stage)

θ

yp(y | θ)

p(θ) p(θ | y)
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Health technology assessment (HTA) “Integrated approach”

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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1. Estimation (base-case)

θ

yp(y | θ)

θ̂ = f(Y )

2. Probabilistic sensitivity analysis

⇒

θp(θ) ! g(θ̂)
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θ

yp(y | θ)

p(θ) p(θ | y)

Gianluca Baio (UCL) BMM for HTA in infectious disease HERC Seminar, 14 Jan 2020 4 / 16



Health technology assessment (HTA) Probabilistic Sensitivity Analysis (PSA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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Health technology assessment (HTA) Probabilistic Sensitivity Analysis (PSA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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Health technology assessment (HTA) Probabilistic Sensitivity Analysis (PSA)

Objective: Combine costs & benefits of a given intervention into a rational scheme for
allocating resources

Statistical
model

Economic
model

Decision
analysis

Uncertainty
analysis

• Estimates relevant population
parameters

• Varies with the type of available
data (& statistical approach!)

• Combines the parameters to obtain
a population average measure for
costs and clinical benefits

• Varies with the type of available
data & statistical model used

• Summarises the economic model by
computing suitable measures of
“cost-effectiveness”

• Dictates the best course of actions,
given current evidence

• Standardised process

• Assesses the impact of uncertainty (eg
in parameters or model structure) on
the economic results

• Mandatory in many jurisdictions
(including NICE, in the UK)

• Fundamentally Bayesian!

Parameters Model structure Decision analysis
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Health technology assessment (HTA)

• In the UK, bodies such as NICE are responsible for guidance and advice (to DoH
and NHS) on whether interventions should be publicly funded

• This applies to many types of health-care interventions
– (First and foremost...) Pharmaceuticals
– Behavioural change/complex interventions (e.g. mental health)
– . . .

• Canada and Australia have very similar set-ups — CADHTA and PBAC are almost
exact counterparts to NICE

• Other jurisdictions (eg France, Italy, Spain) have slightly different (less formal?)
processes — but there is a(n increasing) drive in following in NICE’s footsteps

– As of yesterday, Denmark has decided to adopt QALYs for CEAs. . .
– (. . . unless/until Brexit breaks that too)

• But what about vaccines and interventions for infectious diseases?
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HTA for infectious diseases

• In the UK, appraisal of vaccines is under the remit of a different body (JCVI)
– Since 2009/10, the Health Protection Regulation obliges the Health Secretary to

ensure that recommendations for national vaccination programmes are based on an
assessment demonstrating cost-effectiveness (assuming they have time left after all the
fridges buying. . . )

• However, there are currently no vaccine-specific guidelines for developing clinical or
cost-effectiveness evidence

– Modelling for infectious disease arguably more complex than it is for “normal”
pharmaceutical interventions

– Compartmental models need to account for herd immunity and dynamic transmission

• Typical “compromise” (especially in industry!)
– Epidemiologic component: up to standard

• Usually based on ODEs and advanced mathematical modelling

– Cost-effectiveness analysis: sub-optimal
• (Economic) Modellers only access output of complex mathematical modelling and combines

with ad-hoc procedures
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Motivating example HPV vaccination in Italy (Haeussler et al, 2015. Value in Health)

Females compartment model: Sf = 36 health states
Males compartment model: Sm = 22 health states

Healthy Exposure Infection Clearance Reinfection

Genital warts

Death

Anal
cancer

Head & neck
cancerCervical

cancer

Vaginal
cancer

Vulvar
cancer

Penile
cancer
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Motivating example HPV vaccination in Italy (Haeussler et al, 2015. Value in Health)

Cervical cancer module (blown up)

Infection Clearance Reinfection

Cervical
cancer

CIN I CIN II

CIN III

Year 3Year 2Year 1
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Motivating example HPV vaccination in Italy (Haeussler et al, 2015. Value in Health)

Lots of uncertainty in the model inputs. . .

• HPV transmission rate: crucial parameter, limited/inconclusive evidence available
– Uniform distribution in [0;1] (Korostil et al, 2012)?
– Per sex act: ∼ 40% with a range of 5-100% (Dunne et al, 2006)?
– Per partnership: ∼ 42% with a range of 36-47% (Burchell et al, 2011)?
– Affected by external factors (eg average- vs high-risk sexual behaviour)?

• Bayesian modelling useful to include expert opinion and relatively straightforward for
(probabilistic) sensitivity analysis

95% of the mass in [17%-35%] 95% of the mass in [33%-57%]
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The problem with ODEs(?)

Well — there’s really no problem with ODEs-based dynamic transmission
models. . .BUT:

1 They can be very computationally intensive
2 Often requires specialised software (e.g. Berkeley Madonna), which the average

Economic Modeller is most likely not familiar with
– Steps towards world domination no. 1:

http://www.statistica.it/gianluca/teaching/r-hta-workshop/

3 Crucially, because of the potential computational complexity, the process of
uncertainty/probabilistic sensitivity analysis (PSA) is much less straightforward
(then in “normal” HTAs)!

– Notably, PSA is often conducted “retrospectively” using procedures such as Latin
Hypercube Sampling or Monte Carlo sampling

4 HTA models often involve very complex structures (usually more complex than
standard “clinical” comparisons)

– And this exhacerbates the potential for computational complexity. . .
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“Toy” example Haeussler et al (2018), BMC Medical Research Methodology 18:82

Consider an infectious disease, e.g. HIV

1. Susceptible 2. Infected 3. Asymptomatic 4. Morbid

5. Dead

φ1,2 φ2,3 φ3,4

φ
1,5

φ
2,5 φ 3,

5 φ4,5

χ

• φr,s are the transition parameters, governing movements across the states
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“Toy” example Haeussler et al (2018), BMC Medical Research Methodology 18:82

Consider an infectious disease, e.g. HIV

1. Susceptible 2. Infected 3. Asymptomatic 4. Morbid

5. Dead

φ1,2 φ2,3 φ3,4

φ
1,5

φ
2,5 φ 3,

5 φ4,5

χ

dn1(t)

dt
= χ[n1(t) + n2(t) + n3(t) + n4(t)]− ρ1,2(t)n1(t)− ρ1,5n1(t)

dn2(t)

dt
= ρ1,2(t)n1(t)− ρ2,3n2(t)− ρ2,5n2(t)

dn3(t)

dt
= ρ2,3n2(t)− ρ3,4n3(t)− ρ3,5n3(t)

dn4(t)

dt
= ρ3,4n3(t)− ρ4,5n4(t)

dn5(t)

dt
= ρ1,5n1(t) + ρ2,5n2(t) + ρ3,5n3(t) + ρ4,5n4(t)

φr,s = ρr,s = transition rates (continuous times)
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“Toy” example Haeussler et al (2018), BMC Medical Research Methodology 18:82

Consider an infectious disease, e.g. HIV

1. Susceptible 2. Infected 3. Asymptomatic 4. Morbid

5. Dead

φ1,2 φ2,3 φ3,4

φ
1,5

φ
2,5 φ 3,

5 φ4,5

χ

Π =


π1,1 π1,2 0 0 π1,5

0 π2,2 π2,3 0 π2,5

0 0 π3,3 π3,4 π3,5

0 0 0 π4,4 π4,5

0 0 0 0 1


φr,s = πr,s = transition probabilities (in discrete consecutive times)
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Modelling 3 alternatives. . .

1 “Standard” ODE
– Solve ODE system to estimate the model parameters
– Characterise population dynamics & accounts for herd immunity
– Feed point estimate from the transmission model to the economic model to obtain the

“best-case” scenario
– Re-run economic model for different configuration of the transmission model to do PSA

2 Bayesian ODE (BODE)
– ODE system embedded in wider Bayesian model — typically including the economic

component
– Directly allows for evidence synthesis and functional relationships across parameters
– Fully characterises population dynamics & accounts for herd immunity
– Gold standard — when it can be used (as it may become very computationally

intensive)
– Recent development (e.g. Stan) alleviates computational issues

3 Dynamic Bayesian Markov Model (BMM)
– Simplifies the temporal resolution and consider discrete time intervals
– Simpler to run — and more in line with Economic Modeller’s knowledge
– Can approximate population dynamics & account for herd immunity
– PSA comes from free as a byproduct of the estimation procedure
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BMM — shaking things up. . .

• A “standard” version of a Markov Model (MM) cannot account for population
dynamics & herd immunity

– In fact, MMs are popular in health economics to model chronic diseases
(e.g. cardiovascular or cancer)

• Need to model the transition between Susceptible to Infected to vary over time
– β = probability of pathogen transmission
– ω = rate of contacts between susceptibles

– φt =
It

Nt
= time-dependent pathogen prevalence (=infected/alive in a time interval)

– λt = βωφt = force of infection (varies with time & population composition)

• Can approximate the underlying continuous transition to infection using

π1,2,t = 1− exp(−λt)

– The approximation can be gross due to competing risks and the assumption of
uniformity for the event probabilities in the time intervals

– Can use short cycle lengths (potentially increase computational time)
– Does not need any specialised software (can be fitted using BUGS/JAGS and then

post-processed in R — or even Excel)
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“Toy” example Haeussler et al (2018), BMC Medical Research Methodology 18:82

Parameter Description Distribution BMM Distribution BODE Mean 95% interval
ωMH Partner acquisition rate (high-risk

males)
Poisson-Gamma model equivalent to BMM 9.10 [8.77;9.29]

ωML Partner acquisition rate (low-risk
males)

Poisson-Gamma model equivalent to BMM 2.98 [2.82;3.12]

ωFH Partner acquisition rate (high-risk
females)

Poisson-Gamma model equivalent to BMM 9.00 [8.71;9.26]

ωFL Partner acquisition rate (low-risk fe-
males)

Poisson-Gamma model equivalent to BMM 1.96 [1.86;2.09]

χ Proliferation parameter Gamma(1111.1,111111.1) Gamma(1111.1,111111.1) 0.01 [0.01;0.01]
β STI transmission probability per

partnership
Beta-Binomial model equivalent to BMM 0.16 [0.15;0.16]

π2,3 Transition parameter from state 2 to
state 3

Beta(5119.2, 1279.8) Gamma(25600,32000) 0.80 [0.79;0.81]

π3,4 Transition parameter from state 3 to
state 4

Beta(1842.66, 18631.34) Gamma(2025,22500) 0.09 [0.09;0.09]

π4,5 Transition parameter from state 4 to
state 5

Beta(1535.96, 36863.04) Gamma(1600,40000) 0.04 [0.04;0.04]

π1,5 Transition parameter from state 1 to
state 5

Beta(156.171, 312186.6) Gamma(156.25,312500) <0.01 [<0.01;<0.01]

η Probability of STI diagnosis Beta-Binomial model equivalent to BMM 0.90 [0.88;0.92]
σ Screening probability Beta-Binomial model equivalent to BMM 0.90 [0.87;0.92]
α Vaccine coverage parameter Beta-Binomial model equivalent to BMM 0.90 [0.87;0.92]
γ Vaccine efficacy parameter Beta-Binomial model equivalent to BMM 0.90 [0.87;0.92]
cscreen Unit cost of screening in £ Lognormal(2.996, 0.693) equivalent to BMM 25.39 [5.19;77.53]
cvac Unit cost of vaccination in £ Lognormal(5.011, 0.01) equivalent to BMM 150.02 [147.14;152.98]
ctest Unit cost of STI test in £ Lognormal(2.996, 0.03) equivalent to BMM 20.01 [18.83;21.19]
cblood Unit cost of blood test in £ Lognormal(3.401, 0.03) equivalent to BMM 30 [28.26;31.79]
ctreat Unit cost of treatment in £ Lognormal(8.517, 0.015) equivalent to BMM 4999.78 [4853.56;5149.24]
cdis Unit cost of disease treatment in £ Lognormal(9.210, 0.01) equivalent to BMM 9999.95 [9802.97;10198.10]
cgp Unit cost of visit to general practi-

tioner in £
Lognormal(3.912, 0.02) equivalent to BMM 50.01 [48.08;52.01]

u2 Health utility of infected (min=0,
max=1)

Beta(1469.3, 629.7) equivalent to BMM 0.70 [0.68;0.72]

u3 Health utility of asymptomatic
(min=0, max=1)

Beta(1439.4, 959.6) equivalent to BMM 0.60 [0.58;0.62]

u4 Health utility of morbid (min=0,
max=1)

Beta(629.7, 1469.3) equivalent to BMM 0.30 [0.28;0.32]
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Results (simulations) Computational time

• ODE model (EpiModel/deSolve): 1 hour 15 mins

• BODE model (WinBUGS+WBDiff): 1 hour 50 mins (MCMC using 2 chains) — no
issues with convergence

• BMM model (WinBUGS/JAGS): 9 mins / 2.5 mins (MCMC using 2 chains) — no
issues with convergence

NB: We chose to use more or less standard software, which was available/usable for/in R. Stan is
likely to make the BODE faster to run (but its ODE solver was not fully implemented by the time
we did this...)
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Results (simulations) Cost-effectiveness analysis
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Results (HPV model)

HPV prevalence calibration

age
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Results (HPV model)
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Results (HPV model)

●

Cost effectiveness plane
 Universal vs Female−only

Effectiveness differential in QALY
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Results (HPV model)
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Conclusions

• HTA of interventions for infectious disease typically characterised by
1 (More) complex underlying modelling
2 Need to account for specific features (e.g. population dynamics)
3 Large uncertainty and potentially correlation in/across inputs parameters

• “Industry” standard to model transmission fit for purpose. But: wider economic
modelling often miss out on important aspects

– Full characterisation of uncertainty in model parameters and PSA

• Bayesian modelling and some simplifications (e.g. reduce temporal resolution/model
structure) can be efficient

– Arguably sub-optimal modelling (in some respects). But allows us to get where we
need to be in a more straightforward way
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Thank you!
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