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The Regression Discontinuity Design

The Regression Discontinuity Design (RDD) was first introduced in the
econometrics literature during the 1960s. The original idea was to exploit
policy thresholds to estimate the causal effect of an educational intervention.

The RDD has proven to be very useful when treatment is assigned based on
a pre-specified rule linked to a continuous variable. For example:

- Antiretroviral HIV drugs might be prescribed when a patients CD4 count is
less than 200 cells/mm3;

- Statins might be prescribed when a patient’s 10-year risk of a cardiovascular
event (10-year CVD risk score) exceeds a certain threshold (e.g. in the UK
previously 20% and now 10%)

The key idea is that the threshold acts like a randomizing device.
This is possible if we consider the units close to the threshold as they come from
the same population in which the assignment variable has its own natural
variability ⇒ (conditional) exchangeability

Thistle & Campbell (1960) [9]
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The Regression Discontinuity Design

Education example

We want to quantify the effect of going to college on future income

Comparing the income of individuals who attended college and those who did
not will not provide us with the effect of college attendance alone

I Confounders such as social class, ability, motivation etc will make this difficult

That is a classic problem of observational studies

Often college scholarships are given on the basis of grades obtained in final
school examinations, eg if the average exam grade is above 75%, the student
gets a scholarship

Suppose one student has an average of 74% and another an average of 76%:
I Can we really consider them as coming from different populations especially if

in other respects (eg family income etc) they are the same?
I Given that there is natural variability in exam performance even for the same

individual?
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What is the RD design?

Public health example

Many medicines are prescribed according to a particular guideline
I Antiretroviral HIV drugs prescribed when patient’s CD4 count is less than 200

cells/mm3

I Blood pressure medication is prescribed when patient’s BP is 140/90mmHg or
above

I Statins are prescribed when eg 10 year Framingham risk score is over 20%

Consider a population of HIV patients and suppose patient A has a CD4
count of 195 and patient B has a count of 205 cells/mm3

Theoretically, patient A gets the drugs while patient B does not

Can we really consider them as coming from different populations?
I If the two are the same in every other relevant respect (eg individual

circumstances etc)
I Given that there is a natural variability in CD4 counts and in the instruments

used to measure them?

Gianluca Baio (UCL) Issues with the RDD for causal inference Universitè de Lille, 7 Nov 2016 5 / 24
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Sharp vs Fuzzy RDDs
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Sharp vs Fuzzy RDDs

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6
7

Sharp design:Risk Score vs. LDL 

10−year CVD Risk Score

LD
L 

ch
ol

es
te

ro
l (

m
m

ol
/l)

Treated
Unreated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sharp design:Risk Score vs. p(T=1) 

10−year CVD Risk Score

p(
T

=
1)

Treated
Unreated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6
7

Risk Score vs. LDL Chol Level (mmol/l)

10−year CVD Risk Score

LD
L 

C
ho

l L
ev

el
 (

m
m

ol
/l)

Treated
Unreated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Real data:Risk Score vs. p(T=1)

10−year CVD Risk Score

p(
T

=
1)

Treated
Unreated

Gianluca Baio (UCL) Issues with the RDD for causal inference Universitè de Lille, 7 Nov 2016 6 / 24



Notation & assumptions

X = continuous forcing/assignment variable;

Z = threshold indicator;

T = treatment administered;

C ≡ (O,U) = observed and unobserved covariates;

Y = outcome.

(Main) Assumptions

1 Unconfoundedness: Y⊥⊥Z | (T,C, X)
guarantees that the units just above and below the threshold are “similar”.

2 Independence of Guidelines: Z⊥⊥C | X
the threshold is set by an external body, e.g. a governmental agency.

3 Monotonicity:
No decision-maker systematically defies the guidelines.

Geneletti et al (2015) [3]
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The Causal Effect

- Denote xc = x− x0 to be the centered forcing variable

- Consider the linear model

E(Y ) = µil = β0l + β1lx
c
il l = above, below

- NB: “close” to the threshold, the covariates C are balanced, so no need
to control for them (kind of...) — but: how close is close? (more on this later)
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The Causal Effect: Sharp RDD

- Denote xc = x− x0 to be the centered forcing variable

- Consider the linear model

E(Y ) = µil = β0l + β1lx
c
il l = above, below

- NB: “close” to the threshold, the covariates C are balanced, so no need
to control for them (kind of...) — but: how close is close? (more on this later)

- The formula for the sharp causal estimator is

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
=

∆β

∆π
=
β0a − β0b
πa − πb
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The Causal Effect: Fuzzy RDD

- Denote xc = x− x0 to be the centered forcing variable

- Consider the linear model

E(Y ) = µil = β0l + β1lx
c
il l = above, below

- NB: “close” to the threshold, the covariates C are balanced, so no need
to control for them (kind of...) — but: how close is close? (more on this later)

- The formula for the fuzzy causal effect estimator is

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
=

∆β

∆π
=
β0a − β0b
πa − πb

I πl is an estimate of Pr(T = 1|Z = z), e.g. the chance of being treated
when above or below the threshold.

NB: The RDD can be linked to instrumental variables (IVs)
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Case study: prescription of statins

Statins are a class of drugs used to lower cholesterol and prescribed to
prevent heart disease

I Trials show an average reduction of LDL cholesterol of ≈ 2 mmol/l
I UK NHS guidelines are to prescribe statins to individuals without previous

CVD if their 10 year CVD score exceeds 20%(10%)

Data: Simulation + real clinical practice database containing routine GP
prescriptions as well as information on the variables that determine them
(THIN: www.ucl.ac.uk/pcph/research-groups-themes/thin-pub/database)

I 587 general practices in the UK, covering 5.2% of the (2013) UK population
— over 10 million individuals living in the UK and fairly representative of the
general population

I Individual characteristics (sex, date of birth, date of registration, proxies of
socioeconomic status)

I Medical history (GP visits, prescriptions, exams)
I Relevant clinical outcomes (LDL level, CHD events, deaths)
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The importance of being a Bayesian (1)

Stabilising the estimators
I The denominator of LATE can be very small (i.e. πa ≈ πb)
I Informative priors on the relevant parameters can encode knowledge and

assumptions about these two probabilities so that the resulting estimator does
not explode to ∞

Computational advantages
I Estimation of variances and intervals does not rely on asymptotics — just a

byproduct of MCMC procedures + can naturally include more appropriate
models (vs 2SLS)

Expand the model to include extra information & deal with the two levels of
compliance (GP vs patients)

I For example, logistic regression models to explain the treatment assignment in
terms of practice-level covariates

I Mixture models to include individual level covariates to account for proxies of
compliance with treatment

Cooler!

Geneletti et al (2015) [3]
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Bayesian modelling: µil = β0l + β1lx
c
il

1 Informative prior on the slopes, based on clinical expert opinions

Estimated prior predictive distribution of LDL cholesterol
 for a patient whose risk score = 0
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Estimated prior predictive distribution of LDL cholesterol
 for a patient whose risk score = 0.199
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β1l ∼ Normal(m1l, s
2
1l), for suitable values of m1l and s21l
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Bayesian modelling: µil = β0l + β1lx
c
il

2 Informative priors on the intercepts:
β0b ∼ Normal(m0, s

2
0) and β0a = β0b + φ

Weakly informative prior: φ ∼ Normal(0, 2)
I “Skeptical” prior on the effect of treatment, which is assumed to be null

Strongly informative prior: φ ∼ Normal(−2, 1)
I “Enthusiastic” prior, strongly based on the available information coming from

the RCTs (reduction of 2 mmol/l)
I Relatively small variance to represent strong belief in the trials

3 Informative prior on the probability of treatment:

logit(πa) ∼ Normal(2, 1), logit(πb) ∼ Normal(−2, 1)

I NB: implies that ∆π = πa − πb is centered far from 0 but can vary
I Helps stabilise the denominator and thus the LATE

Ward et al (2007) [10]
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Bayesian modelling: logit(πl)

Prior density estimates for probability of treatment
 above and below the threshold
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Results

Bandwidth = 0.25 (fairly large!), Treatment effect size ∼ Normal(−2, 0.52)

LATE estimation (Strong IV)
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The importance of being a Bayesian (2)

Most of the RDD literature focusses on continuous outcomes, but often in
biostatistics, practitioners are interested in binary outcomes

Can draw on the IV-based Multiplicative Structural Mean Models (MSMMs),
which consider the causal Risk Ratio for the Treated (RRT)

RRT =
E[Ea(Y | Z) | T = 1]

E[Eb(Y | Z) | T = 1]

= 1− E(Y | Z = 1)− E(Y | Z = 0)

E(Y T̄ | Z = 1)− E(Y T̄ | Z = 0)

when a set of assumptions holds (log-linear in t + no T -Z multiplicative interaction)

Known issues of standard estimators (e.g. generalised method of moments):
I May give absurde results (lower 95% interval estimate < 0)
I The data for the product term (Y T̄ ) are usually sparse ⇒ implausibly wide

interval estimates

Can “fix” it by using suitable constraints — fairly easy in a Bayesian setting

Geneletti et al (2016) [4]
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Constraining the models (1)

The RRT is expressed as a function of a set of parameters (in the same spirit
as the LATE)

RRT = f (exp(αa)− exp(αb))

where:
I αa and αb are the intercepts in the log-linear models for E(Y | Z = 1) and

E(Y | Z = 0)
I For convenience, model yil ∼ Poisson(µil) — consistent with MSMM

assumptions

Typically, we would put priors on αa and αb, which would induce a prior
on RRT

But: can also put a prior on RRT to ensure that it is > 0 and, say, αa and
then induce a prior on αb, e.g.

RRT ∼ Gamma(3, 1) αa ∼ p(αa) and αb = g (RRT, αa)
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Constraining the models (2)

NB: “Industry standard” methods (based on generalised mehod of moments) fail
to give reasonable results in many scenarios
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B) High confounding, Weak IV, RR= 2.12
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⇒ based on E(Y T̄ | Z)

⇒ based on E(Y | T̄ , Z)E(T̄ | Z)
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Bandwidth selection

Bandwidth selection for RDD is addressed in the literature in two main ways:

1 Producing results using data within a number of different bandwidths, that
may be selected also with the guidance of an expert in the field of study.

2 Selecting an “optimal” bandwidth aimed at minimizing an error term related
to the estimation of the effect in a non-parametric fashion.

CV A Cross Validation based approach
IK A Mean Square Error minimization based method, designed to give unbiased

point estimator for the effect;
CCT A bias-correction and robust inference method recently, focusing on getting

an unbiased interval estimator for the effect.
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Bandwidth selection

Bandwidth selection for RDD is addressed in the literature in two main ways:

1 Producing results using data within a number of different bandwidths, that
may be selected also with the guidance of an expert in the field of study.

2 Selecting an “optimal” bandwidth aimed at minimizing an error term related
to the estimation of the effect in a non-parametric fashion.

CV A Cross Validation based approach

IK A Mean Square Error minimization based method, designed to give unbiased
point estimator for the effect;

CCT A bias-correction and robust inference method recently, focusing on getting
an unbiased interval estimator for the effect.

Des Jardins & McCall (2008) [2]
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CV A Cross Validation based approach
IK A Mean Square Error minimization based method, designed to give unbiased

point estimator for the effect;

CCT A bias-correction and robust inference method recently, focusing on getting
an unbiased interval estimator for the effect.

Des Jardins & McCall (2008) [2]; Imbens & Kalyanaraman (2011) [5]
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Bandwidth selection

Bandwidth selection for RDD is addressed in the literature in two main ways:

1 Producing results using data within a number of different bandwidths, that
may be selected also with the guidance of an expert in the field of study.

2 Selecting an “optimal” bandwidth aimed at minimizing an error term related
to the estimation of the effect in a non-parametric fashion.

CV A Cross Validation based approach
IK A Mean Square Error minimization based method, designed to give unbiased

point estimator for the effect;
CCT A bias-correction and robust inference method recently, focusing on getting

an unbiased interval estimator for the effect.

Des Jardins & McCall (2008) [2]; Imbens & Kalyanaraman (2011) [5]; Calonico et al (2015) [1]
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What’s wrong with that?

Fail to account properly for the real issue — exchangeability

set.seed(90)
tr <- 0.5
X <- runif(2000,0,1)
Z <- as.numeric(X>tr)
X.c <- X-tr
e <- rnorm(2000, 0, .05)
Y <- Z*(3+0.5*X.c) + (1-Z)*(2.5+0.7*X.c) + e

# sets the random number generator seed
# sets the value for the threshold
# generates assignment variable
# generates treatment indicator
# centers assignment variable
# generates random error (white noise)
# generates the outcome variable

NB: In this case

The design is sharp

No unobserved confounders

The outcome is fully determined by the forcing variable

⇒ observations are (conditionally) exchangeable below and above the threshold!
⇒ shouldn’t we be able to use all (most?) the data to estimate the causal effect
(and gain precision)?
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Use them all?
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Use them all? Default optimisation (min MSE)
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Use them all? Alternative optimisation (sum for regression estimates)
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Alternative methods?

Possibly use flexible regressions (e.g. splines) — but standard setting may
not be flexible enough...

I We may know that individuals at either extreme really are too different and do
not want them to basically matter at all...

Other avenues?
I Reverse random walk priors — anchor priors to one extreme and “filter”

irrelevant data [work in progress]
I Spatially structured models — formally account for spatial distance from the

threshold [work in progress?!]
I Clustering — individuals with similar characteristics are clustered together and

can be used as “exchageable” [work in progress]

More importantly, selection should happen according to balancing in the
confounders above & below the threshold!
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Some tentative results
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Conclusions

“Real World Evidence” (i.e. Electronic Health Record data) is increasingly
popular in research

I Causal estimates are still tricky because of issues with self-selection,
confounding, etc

Useful to (critically!) explore specific designs to balance characteristics
I RDD
I Interrupted time series
I ...

Bayesian modelling particularly helpful
I Because data are available in registries, administrative databases, there are

likely to be RCTs (may be on small samples/time frames) to base priors on
I Design alone may not be sufficient to obtain balance — may need to impose

constraints ⇒ explicit and typically relatively easy in a full Bayesian framework
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https://www.nice.org.uk/guidance/cg181


Thank you!
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