Full Bayesian models to handle missing values in cost-effectiveness analysis from individual level data

Gianluca Baio

(Joint work with Andrea Gabrio and Alexina Mason)

University College London Department of Statistical Science

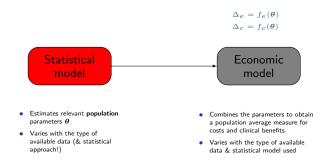
g.baio@ucl.ac.uk

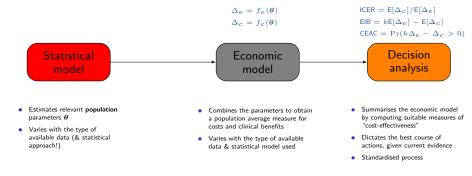
http://www.ucl.ac.uk/statistics/research/statistics-health-economics/ http://www.statistica.it/gianluca https://github.com/giabaio

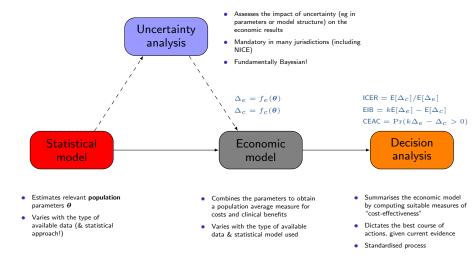
> RSS 2017 International Conference University of Strathclyde, Glasgow

Wednesday 6 September 2017

- Estimates relevant population parameters θ
- Varies with the type of available data (& statistical approach!)







		Den	nograp	hics		HRQL	data		Re	source ı	ıse da	ta
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

		Den	nograp	hics		HRQL	data		Re	source ı	ise da	ta
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

and the typical analysis is based on the following steps:

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

		Den	nograp	hics		HRQL	data		Re	source ı	ıse da	ta
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

and the typical analysis is based on the following steps:

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i &=& \alpha_{e0} + \alpha_{e1} u_{0i} + \alpha_{e2} \mathsf{Trt}_i + \varepsilon_{ei} \, [+ \dots], & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_e) \\ c_i &=& \alpha_{c0} + \alpha_{c1} c_{0i} + \alpha_{c2} \mathsf{Trt}_i + \varepsilon_{ci} \, [+ \dots], & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_c) \end{array}$$

		Den	nograp	hics		HRQL	data		Re	source ı	ıse da	ta
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	Μ	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

and the typical analysis is based on the following steps:

Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1} \right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=0}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}} \right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathsf{Trt}_i + \varepsilon_{ei} \, [+ \dots], & & \varepsilon_{ei} \sim \mathsf{Normal}(0, \sigma_e) \\ c_i & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathsf{Trt}_i + \varepsilon_{ci} \, [+ \dots], & & \varepsilon_{ci} \sim \mathsf{Normal}(0, \sigma_c) \end{array}$$

Stimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

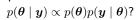
Gianluca Baio (UCL)

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - NB: In any case, the economic evaluation is based on both!

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - NB: In any case, the economic evaluation is based on both!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Can use more suitable models (e.g. Gamma or log-Normal) especially under the Bayesian approach

- Potential correlation between costs & clinical benefits
 - Strong positive correlation effective treatments are innovative and result from intensive and lengthy research \Rightarrow are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.
 - NB: In any case, the economic evaluation is based on both!
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]
 - Can use transformation (e.g. logs) but care is needed when back transforming to the natural scale
 - Can use more suitable models (e.g. Gamma or log-Normal) especially under the Bayesian approach
- ... and of course Partially Observed data
 - Can have item and/or unit non-response
 - Missingness may occur in either or both benefits/costs
 - The missingness mechanisms may also be correlated
 - Focus in decision-making not inference!

To be or not to be (Bayesians)?...

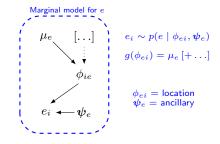


To be or not to be (Bayesians)?...

• In general, can represent a joint distribution as a conditional regression

 $p(e,c) = p(e)p(c \mid e) = p(c)p(e \mid c)$

To be or not to be (Bayesians)?...



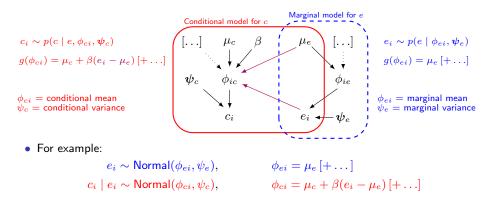
$$c_{i} \sim p(c \mid e, \phi_{ci}, \psi_{c})$$

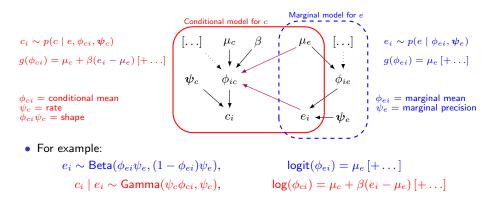
$$g(\phi_{ci}) = \mu_{c} + \beta(e_{i} - \mu_{e}) [+ \dots]$$

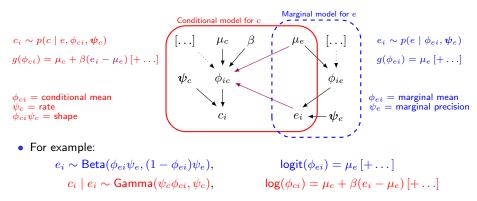
$$\phi_{ci} = \text{location}$$

$$\psi_{c} = \text{ancillary}$$

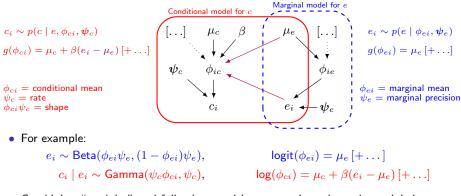
$$\begin{array}{c} \text{Conditional model for } c \\ \hline \text{Marginal model for } e \\ \hline \text{Marginal model for e \\ \hline \text{$$







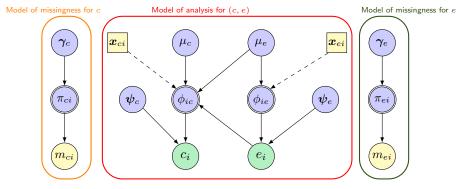
• Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC



- Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities is relatively straightforward using MCMC
- Prior information can help stabilise inference (especially with sparse data!), eg
 - Cancer patients are unlikely to survive as long as the general population
 - ORs are unlikely to be greater than ± 5

Gianluca Baio (UCL)

MCAR(e, c)



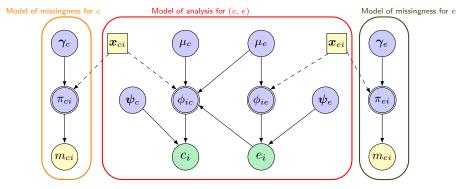
Partially observed data

Unobservable parameters
 Deterministic function of random quantities

- Fully observed, unmodelled data
- Fully observed, modelled data
- $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$
- $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$

 $logit(\pi_{ei}) = \gamma_{e0}$ $logit(\pi_{ci}) = \gamma_{c0}$

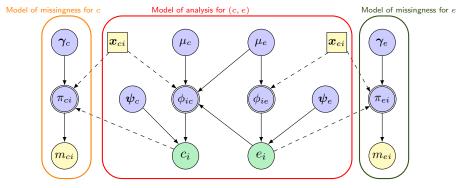
MAR (e, c)



- Partially observed data
- Unobservable parameters
- Deterministic function of random quantities
- Fully observed, unmodelled data
- Fully observed, modelled data

• $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$ $\log it(\pi_{ei}) = \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik}$ • $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$ $\log it(\pi_{ci}) = \gamma_{c0} + \sum_{b=1}^{H} \gamma_{cb} x_{cib}$

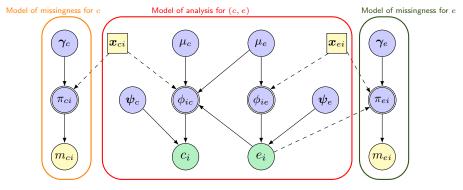
MNAR (e, c)



- Partially observed data
- Unobservable parameters
- Deterministic function of random quantities
- Fully observed, unmodelled data
- Fully observed, modelled data

• $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$ $\text{logit}(\pi_{ei}) = \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} + \gamma_{eK+1} e_i$ • $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$ $\log it(\pi_{ci}) = \gamma_{c0} + \sum_{b=1}^{H} \gamma_{cb} x_{cib} + \gamma_{cH+1} c_i$

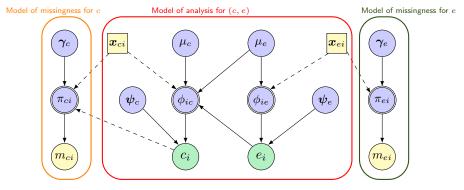
MNAR e; MAR c



- Partially observed data
- Unobservable parameters
- O Deterministic function of random quantities
- Fully observed, unmodelled data
- Fully observed, modelled data

• $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$ $\log it(\pi_{ei}) = \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik} + \gamma_{eK+1} e_i$ • $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$ $\log it(\pi_{ci}) = \gamma_{c0} + \sum_{h=1}^{H} \gamma_{ch} x_{cih}$

MAR e; MNAR c



- Partially observed data
- Unobservable parameters
- O Deterministic function of random quantities
- Fully observed, unmodelled data
- Fully observed, modelled data

• $m_{ei} \sim \text{Bernoulli}(\pi_{ei});$ $\log it(\pi_{ei}) = \gamma_{e0} + \sum_{k=1}^{K} \gamma_{ek} x_{eik}$ • $m_{ci} \sim \text{Bernoulli}(\pi_{ci});$ $\log it(\pi_{ci}) = \gamma_{c0} + \sum_{k=1}^{H} \gamma_{ch} x_{cih} + \gamma_{cH+1} c_i$

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

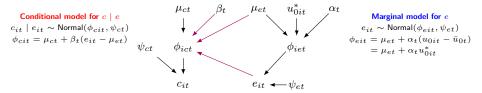
Time	Type of outcome	observed (%)	observed (%)
		Control $(n_1=75)$	Intervention $(n_2=84)$
Baseline	utilities	72 (96%)	72 (86%)
3 months	utilities and costs	34 (45%)	23 (27%)
6 months	utilities and costs	35 (47%)	23 (27%)
12 months	utilities and costs	43 (57%)	36 (43%)
Complete cases	utilities and costs	27 (44%)	19 (23%)

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

RSS-pics.pdf	RSS-pics.pdf
RSS-pics.pdf	RSS-pics.pdf

Bivariate Normal

- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

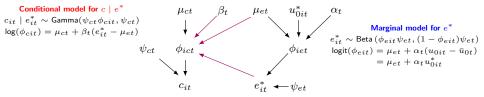


Bivariate Normal

- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

8 Beta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e_{it}^* = (e_{it} \epsilon)$ to avoid spikes at 1



Bivariate Normal

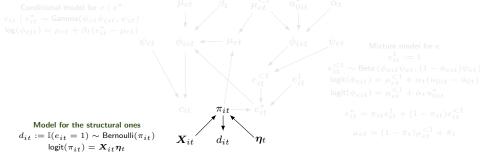
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}



Gianluca Baio (UCL)

Bivariate Normal

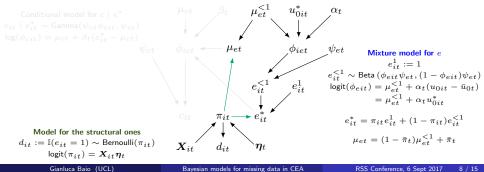
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}



Bivariate Normal

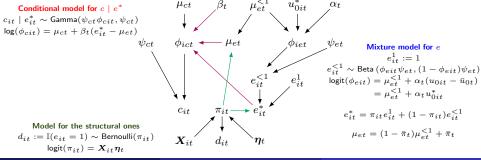
- Simpler and closer to "standard" frequentist model
- Account for correlation between QALYs and costs

eta-Gamma

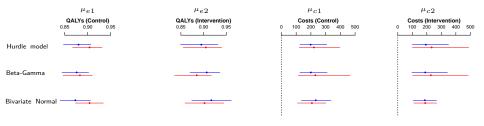
- Account for correlation between outcomes
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- But: needs to rescale observed data $e^*_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

- Model e_{it} as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values
- May expand to account for partially observed baseline utility u_{0it}

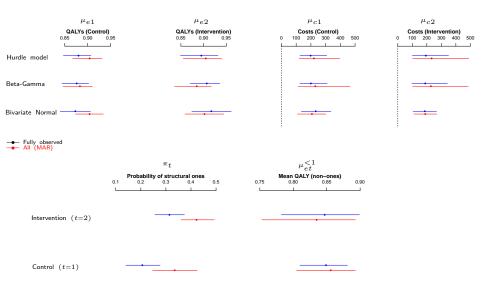


Results — estimation of the main parameters (CCA + MAR)

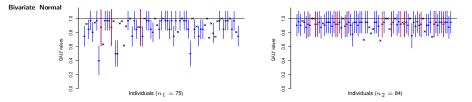


Fully observed
 All (MAR)

Results — estimation of the main parameters (CCA + MAR)

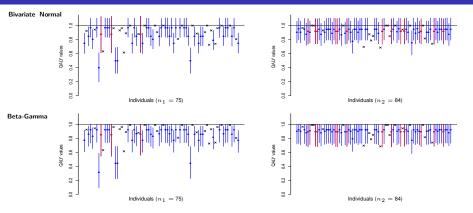


Bayesian multiple imputation (under MAR)



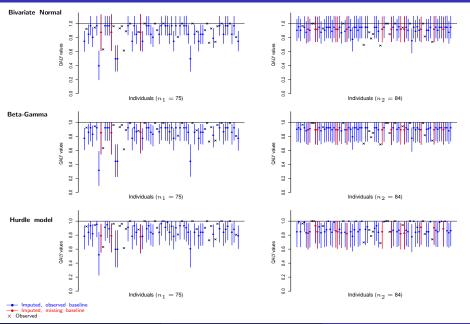
Imputed, observed baseline
 Imputed, missing baseline
 X Observed

Bayesian multiple imputation (under MAR)



Imputed, observed baseline
 Imputed, missing baseline
 X Observed

Bayesian multiple imputation (under MAR)



- We observe $n_{01}=13$ and $n_{02}=22$ individuals with $u_{0it}=1$ and $u_{jit}={\sf NA},$ for j>1
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative MNAR departures from MAR

- We observe $n_{01} = 13$ and $n_{02} = 22$ individuals with $u_{0it} = 1$ and $u_{jit} =$ NA, for j > 1
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative MNAR departures from MAR

MNAR1. Set $d_{it} = 1$ for all individuals with unit observed baseline utility

- We observe $n_{01} = 13$ and $n_{02} = 22$ individuals with $u_{0it} = 1$ and $u_{jit} =$ NA, for j > 1
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative MNAR departures from MAR

MNAR1. Set $d_{it} = 1$ for all individuals with unit observed baseline utility MNAR2. Set $d_{it} = 0$ for all individuals with unit observed baseline utility

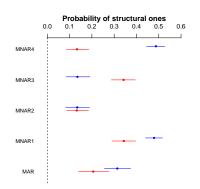
- We observe $n_{01}=13$ and $n_{02}=22$ individuals with $u_{0it}=1$ and $u_{jit}={\sf NA},$ for j>1
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative MNAR departures from MAR

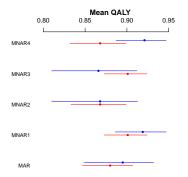
MNAR1. Set $d_{it} = 1$ for all individuals with unit observed baseline utility MNAR2. Set $d_{it} = 0$ for all individuals with unit observed baseline utility MNAR3. Set $d_{it} = 1$ for the $n_{01} = 13$ individuals with $u_{0i1} = 1$ and $d_{it} = 0$ for the $n_{02} = 22$ individuals with $u_{0i2} = 1$

- We observe $n_{01}=13$ and $n_{02}=22$ individuals with $u_{0it}=1$ and $u_{jit}={\sf NA},$ for j>1
- For those individuals, we cannot compute directly the structural one indicator d_{it} and so need to make assumptions/model this
 - Sensitivity analysis to alternative MNAR departures from MAR

MNAR1. Set $d_{it} = 1$ for all individuals with unit observed baseline utility

- MNAR2. Set $d_{it} = 0$ for all individuals with unit observed baseline utility
- MNAR3. Set $d_{it} = 1$ for the $n_{01} = 13$ individuals with $u_{0i1} = 1$ and $d_{it} = 0$ for the $n_{02} = 22$ individuals with $u_{0i2} = 1$
- MNAR4. Set $d_{it} = 0$ for the $n_{01} = 13$ individuals with $u_{0i1} = 1$ and $d_{it} = 1$ for the $n_{02} = 22$ individuals with $u_{0i2} = 1$



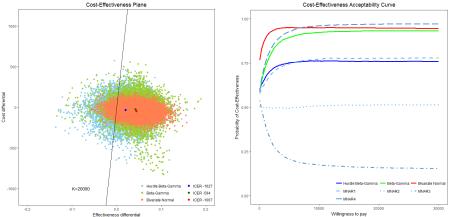


 μ_{et}

 π_t

--- Control (t = 1)--- Intervention(t = 2)

Cost-effectiveness analysis



Cost-Effectiveness Acceptability Curve

- A full Bayesian approach to handling missing data extends standard "imputation methods"
 - Can consider MAR and MNAR with relatively little expansion to the basic model

- A full Bayesian approach to handling missing data extends standard "imputation methods"
 - Can consider MAR and MNAR with relatively little expansion to the basic model
- · Particularly helpful in cost-effectiveness analysis, to account for
 - Asymmetrical distributions for the main outcomes
 - Correlation between costs & benefits
 - Structural values (eg spikes at 1 for utilities or spikes at 0 for costs)

- A full Bayesian approach to handling missing data extends standard "imputation methods"
 - Can consider MAR and MNAR with relatively little expansion to the basic model
- · Particularly helpful in cost-effectiveness analysis, to account for
 - Asymmetrical distributions for the main outcomes
 - Correlation between costs & benefits
 - Structural values (eg spikes at 1 for utilities or spikes at 0 for costs)
- Need specialised software + coding skills
 - R package missingHE under development to implement a set of general models
 - Preliminary work available at https://github.com/giabaio/missingHE
 - Eventually, will be able to combine with existing packages (eg BCEA: http://www.statistica.it/gianluca/BCEA; https://github.com/giabaio/BCEA) to perform the whole economic analysis

Thank you!