Zero to hero
Recently, I’ve been working on a paper, which I think is coming along nicely. The basic problem is like this: in a health economic evaluation, sometimes data are collected on a sample of individuals. Say, for example, that
Costs (and for that matters benefits) are almost invariably associated with skewed distributions (and thus suitable models are Gamma and log-Normal) and, generally
In the paper, I extend the framework of hurdle models commonly used to tackle the issue of individual patients with observed zero costs, to include a full cost-effectiveness model, accounting for correlation between costs and a suitable measure of clinical effectiveness (eg QALYs). Basically, I do this using a structure consisting of:
- a selection model for the chance of observing a zero cost, typically as a function of some individual covariates (eg age and sex);
- a marginal model for the costs, inducing a mixture (of subjects with 0 cost and subjects with positive costs), depending on the selection model;
- a conditional model for the benefits, depending on the costs (so that correlation between
is guaranteed).
In graphical terms, something like this.
The green part is the selection model, estimating the overall average probability of a zero cost, which is used to weigh the components of the mixture model (in red). The observed costs have a distribution which is characterised by two parameters (
I’ve prepared a R package that would use this framework to do this analysis. I’m allowing for some possible distributions for both
I’ll post more once I’ve debugged the package and prepared a couple of nice examples (I’ll put a working paper in here soon). I’ll also give a talk on this at the LSHTM in the autumn