References
Achana, F.A., Cooper, N.J., Bujkiewicz, S., Hubbard, S.J., Kendrick, D.,
Jones, D.R., Sutton, A.J., 2014. Network meta-analysis of multiple
outcome measures accounting for borrowing of information across
outcomes. BMC Medical Research Methodology 14. https://doi.org/10.1186/1471-2288-14-92
Ades, A.E., 2003. A chain of evidence with mixed comparisons: models for
multi-parameter synthesis and consistency of evidence.
Statistics in Medicine 22, 2995–3016. https://doi.org/10.1002/sim.1566
Ades, A., Lu, G., Claxton, K., 2004. Expected Value
of Sample Information Calculations in Medical Decision Modeling.
Medical Decision Making 24, 207–227.
Alarid-Escudero, F., Krijkamp, E., Enns, E.A., Yang, A., Hunink, M.G.M.,
Pechlivanoglou, P., Jalal, H., 2023a. An
Introductory Tutorial on Cohort State-Transition Models in R Using a
Cost-Effectiveness Analysis Example. Medical Decision Making 43,
3–20. https://doi.org/10.1177/0272989X221103163
Alarid-Escudero, F., Krijkamp, E., Enns, E.A., Yang, A., Hunink, M.G.M.,
Pechlivanoglou, P., Jalal, H., 2023b. A Tutorial on
Time-Dependent Cohort State-Transition Models in R Using a
Cost-Effectiveness Analysis Example. Medical Decision Making 43,
21–41. https://doi.org/10.1177/0272989x221121747
Alarid-Escudero, F., Krijkamp, E.M., Pechlivanoglou, P., Jalal, H., Kao,
S.-Y.Z., Yang, A., Enns, E.A., 2019. A need for change! A coding
framework for improving transparency in decision modeling.
PharmacoEconomics 37, 1329–1339.
Allaire, J.J., Teague, C., Scheidegger, C., Xie, Y., Dervieux, C., 2024.
Quarto. https://doi.org/10.5281/zenodo.5960048
Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins,
A., Wickham, H., Cheng, J., Chang, W., Iannone, R., 2021. rmarkdown:
Dynamic Documents for R. R package version 2.8.
Amdahl, J., 2022. Flexsurvcure:
Flexible parametric cure models.
Andronis, L., Barton, P., Bryan, S., 2009. Sensitivity analysis in economic evaluation: an audit of
NICE current practice and a review of its use and value in
decision-making.
Aponte Ribero, V., Sanchez Alvarez, J., 2022. Descem: Discrete event
simulation for cost-effectiveness modelling.
Ara, R., Brazier, J.E., 2011. Using health state utility values from the
general population to approximate baselines in decision analytic models
when condition-specific data are not available. Value in Health 14,
539–545.
Ataga, A.K., Kenneth I.; Kutlar, 2017. Crizanlizumab for the prevention
of pain crises in sickle cell disease. New England Journal of Medicine
376, 429–439. https://doi.org/https://dx.doi.org/10.1056/NEJMoa1611770
Attema, A.E., Bleichrodt, H., L’Haridon, O., Peretti-Watel, P., Seror,
V., 2018. Discounting health and money: New evidence using a more
robust method. Journal of Risk and Uncertainty 56, 117–140. https://doi.org/10.1007/s11166-018-9279-1
Australian Government Department of Health and Aged Care, 2023. Australian HTA review HTA methods:
Economic evaluation.
Baharnoori, M., Bhan, V., Clift, F., Thomas, K., Mouallif, S., Adlard,
N., Cooney, P., Blanchette, F., Patel, B.P., Grima, D., 2022. Cost-Effectiveness Analysis of Ofatumumab for the
Treatment of Relapsing-Remitting Multiple Sclerosis in Canada.
Pharmacoecon Open 6, 859–870. https://doi.org/10.1007/s41669-022-00363-1
Baio, G., 2020. survHE: survival analysis for
health economic evaluation and cost-effectiveness modeling.
Journal of Statistical Software 95, 1–47.
Baio, G., 2014. Bayesian models for
cost-effectiveness analysis in the presence of structural zero
costs. Statistics in Medicine 33, 1900–1913.
Baio, G., 2012. Bayesian methods in Health
Economics. CRC Press, Boca Raton, FL.
Baio, G., Berardi, A., Heath, A., 2017. Bayesian
Cost-Effectiveness Analysis with the R package BCEA. Springer,
New York, NY. https://doi.org/10.1007/978-3-319-55718-2
Baio, G., Dawid, P., 2011. Probabilistic
sensitivity analysis in health economics. Statistical methods in
medical research 24, 615–634.
Balestroni, G., Bertolotti, G., 2012. EuroQol-5D
(EQ-5D): an instrument for measuring quality of life.
Monaldi Archives for Chest Disease 78.
Barton, P., Bryan, S., Robinson, S., 2004. Modelling in the
economic evaluation of health care: selecting the appropriate
approach. Journal of Health Services Research & Policy 9,
110–118. https://doi.org/10.1258/135581904322987535
Basu, A., Manca, A., 2012. Regression estimators
for generic health-related quality of life and quality-adjusted life
years. Medical Decision Making 32, 56–69.
Bayes, T., 1763. An essay towards solving a problem
in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated
by Mr. Price, in a letter to John Canton, AMFR S. Philosophical
transactions of the Royal Society of London 370–418.
Beecham, J., Knapp, M., others, 2001. Costing
psychiatric interventions. Measuring mental health
needs 2, 200–224.
Beeken, R., Leurent, B., Vickerstaff, V., Wilson, R., Croker, H.,
Morris, S., Omar, R., Nazareth, I., Wardle, J., 2017. A brief intervention for weight control based on
habit-formation theory delivered through primary care: results from a
randomised controlled trial. International Journal of
Obesity 41, 246–254.
Belger, M., Brnabic, A., Kadziola, Z., Petto, H., Faries, D., 2015.
Alternative weighting approaches for matching adjusted indirect
comparisons (MAIC). Value in Health 18, A31–A32. https://doi.org/10.1016/j.jval.2015.03.190
Berlin, J.A., Santanna, J., Schmid, C.H., Szczech, L.A., Feldman, H.I.,
2002. Individual patient- versus group-level data meta-regressions for
the investigation of treatment effect modifiers: Ecological bias rears
its ugly head. Statistics in Medicine 21, 371–387. https://doi.org/10.1002/sim.1023
Beyersmann, J., Allignol, A., Schumacher, M., 2012. Competing Risks and Multistate Models with R,
Use R! Springer.
Blaser, N., Salazar Vizcaya, L., Estill, J., Zahnd, C., Kalesan, B.,
Egger, M., Keiser, O., Gsponer, T., 2015. gems: An R
Package for Simulating from Disease Progression Models 64.
Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R., 2010. A
basic introduction to fixed-effect and random-effects models for
meta-analysis. Research Synthesis Methods 1, 97–111. https://doi.org/10.1002/jrsm.12
Brennan, A., Chick, S.E., Davies, R., 2006. A taxonomy of model
structures for economic evaluation of health technologies. Health Econ
15, 1295–310. https://doi.org/10.1002/hec.1148
Briggs, A., Clark, T., Wolstenholme, J., Clarke, P., 2003. Missing.... presumed at random: cost-analysis of
incomplete data. Health economics 12, 377–392.
Briggs, A., Claxton, K., Sculpher, M., 2006. Decision Modelling for Health Economic
Evaluation. Oxford University Press.
Briggs, A., Weinstein, M., Fenwick, E., Karnon, J., Sculpher, M.,
Paltiel, A., 2012. Model Parameter Estimation and Uncertainty
Analysis. Medical Decision Making 32, 722–732. https://doi.org/10.1177/0272989x12458348
Brooks, S., Gelman, A., Jones, G., Meng, X.-L., 2011. Handbook of Markov Chain Monte Carlo. CRC press.
Bucher, H.C., Guyatt, G.H., Griffith, L.E., Walter, S.D., 1997. The
results of direct and indirect treatment comparisons in meta-analysis of
randomized controlled trials. Journal of Clinical Epidemiology 50,
683–91. https://doi.org/10.1016/s0895-4356(97)00049-8
Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel
inference. Springer.
Burton, A., Billingham, L.J., Bryan, S., 2007. Cost-effectiveness in clinical trials: using multiple
imputation to deal with incomplete cost data. Clinical Trials 4,
154–161.
CADTH, 2023. Procedures for CADTH Reimbursement Reviews.
CADTH, 2019. Guidelines for the economic evaluation
of health technologies: Canada [4th Edition].
CADTH, 2006. Guidelines for economic evaluation of
health technologies (Report). The Canadian Coordinating Office
for Health Technology Assessment.
Campbell, H., Karnon, J., Dowie, R., 2001. Cost analysis of a
hospital-at-home initiative using discrete event simulation.
Journal of Health Services Research & Policy 6, 14–22. https://doi.org/10.1258/1355819011927152
Caro, J.J., Briggs, A.H., Siebert, U., Kuntz, K.M., 2012. Modeling good research practices–overviewn: a report of
the ISPOR-SMDM Modeling Good Research Practices Task Force–1. 15,
796–803. https://doi.org/10.1016/j.jval.2012.06.012
Caro, J.J., Ishak, K.J., 2010. No head-to-head trial?
Simulate the missing arms. Pharmacoeconomics 28, 957–967.
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M.A., Guo, J., Li, P., Riddell, A., 2017.
Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32. https://doi.org/10.18637/jss.v076.i01
Chacon, S., Straub, B., 2014. Pro git. Springer Nature.
Chandler, C., Proskorovsky, I., 2023. MSR25 uncertain about uncertainty
in matching-adjusted indirect comparisons (MAIC)? A simulation study to
compare methods for variance estimation. Value in Health 26, S398. https://doi.org/10.1016/j.jval.2023.09.2084
Chang, W., Borges Ribeiro, B., 2018. shinydashboard: Create Dashboards with
’Shiny’.
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y.,
Allen, J., McPherson, J., Dipert, A., Borges, B., 2021. shiny: Web Application Framework for R.
Che, Z., Green, N., Baio, G., 2023. Blended survival curves: A new
approach to extrapolation for time-to-event outcomes from clinical
trials in health technology assessment. Medical Decision Making 43,
299–310.
Cheng, D., Tchetgen, E.T., Signorovitch, J., 2023. On the
double‐robustness and semiparametric efficiency of matching‐adjusted
indirect comparisons. Research Synthesis Methods 14, 438–442. https://doi.org/10.1002/jrsm.1616
Claxton, K., 1999a. Bayesian approaches to the
value of information: implications for the regulation of new
pharmaceutical. Health Economics 8, 269–274.
Claxton, K., 1999b. The irrelevance of inference: A decision-making
approach to the stochastic evaluation of health care technologies.
Journal of health economics 18, 341–364.
Claxton, K., Sculpher, M., McCabe, C., Briggs, A., Akehurst, R., Buxton,
M., Brazier, J., O’Hagan, A., 2005. Probabilistic
sensitivity analysis for NICE technology assessment: not an optional
extra. Health Economics 14, 339–347.
Conti, S., Claxton, K., 2009. Dimensions of design
space: a decision-theoretic approach to optimal research design.
Medical Decision Making 29, 643–660.
Cooper, N.J., Spiegelhalter, D., Bujkiewicz, S., Dequen, P., Sutton,
A.J., 2013. Use of implicit and explicit bayesian
methods in health technology assessment. International Journal of
Technology Assessment in Health Care 29, 336–342. https://doi.org/10.1017/S0266462313000354;
10.1017/S0266462313000354
Cope, S., Chan, K., Campbell, H., Chen, J., Borrill, J., May, J.R.,
Malcolm, W., Branchoux, S., Kupas, K., Jansen, J.P., 2023. A comparison
of alternative network meta-analysis methods in the presence of
nonproportional hazards: A case study in first-line advanced or
metastatic renal cell carcinoma. Value Health 26, 465–476. https://doi.org/10.1016/j.jval.2022.11.017
Cope, S., Chan, K., Jansen, J.P., 2020. Multivariate network
meta-analysis of survival function parameters. Research Synthesis
Methods 11, 443–456. https://doi.org/10.1002/jrsm.1405
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001.
Introduction to algorithms, 2nd ed. The MIT Press.
Cowles, M.K., Carlin, B.P., 1996. Markov Chain Monte Carlo
Convergence Diagnostics: A Comparative Review. Journal of
the American Statistical Association 91, 883–904.
Cox, D.R., Miller, H.D., 1965. The theory of stochastic processes.
Methuen, London.
Crowther, M.J., Lambert, P.C., 2014. A general framework for parametric
survival analysis. Stat. Med. 33, 5280–5297.
Csardi, G., Nepusz, T., 2006. The igraph software package for complex network
research. InterJournal Complex Systems, 1695.
Daniels, M.J., Hogan, J.W., 2008. Missing data in
longitudinal studies: Strategies for Bayesian modeling and sensitivity
analysis. CRC press.
Deeks, J.J., Higgins, J.P.T., Altman, D.G., 2023. Chapter 10: Analysing
data and undertaking meta-analyses. In: Higgins JPT, thomas j, chandler
j, cumpston m, li t, page MJ, welch VA (editors). Cochrane handbook for
systematic reviews of interventions version 6.4 (updated august 2023).
Cochrane, 2023. Available from www.training.cochrane.org/handbook.
Degeling, K., Franken, M.D., May, A.M., Oijen, M.G.H. van, Koopman, M.,
Punt, C.J.A., IJzerman, M.J., Koffijberg, H., 2018a. Matching the
model with the evidence: comparing discrete event simulation and
state-transition modeling for time-to-event predictions in a
cost-effectiveness analysis of treatment in metastatic colorectal cancer
patients. Cancer Epidemiology 57, 60–67. https://doi.org/10.1016/j.canep.2018.09.008
Degeling, K., IJzerman, M.J., Groothuis-Oudshoorn, C.G.M., Franken,
M.D., Koopman, M., Clements, M.S., Koffijberg, H., 2022. Comparing
Modeling Approaches for Discrete Event Simulations With Competing Risks
Based on Censored Individual Patient Data: A Simulation Study and
Illustration in Colorectal Cancer. Value in Health 25, 104–115.
https://doi.org/10.1016/j.jval.2021.07.016
Degeling, K., IJzerman, M.J., Koopman, M., Koffijberg, H., 2017.
Accounting for parameter uncertainty in the definition of
parametric distributions used to describe individual patient variation
in health economic models. BMC Medical Research Methodology 17.
https://doi.org/10.1186/s12874-017-0437-y
Degeling, K., Koffijberg, H., Franken, M.D., Koopman, M., IJzerman,
M.J., 2018b. Comparing Strategies for Modeling Competing Risks in
Discrete-Event Simulations: A Simulation Study and Illustration in
Colorectal Cancer. Medical Decision Making 39, 57–73. https://doi.org/10.1177/0272989x18814770
Degeling, K., To, Y.H., Trapani, K., Athan, S., Gibbs, P., IJzerman,
M.J., Franchini, F., 2024. Predicting the population health economic
impact of current and new cancer treatments for colorectal cancer: A
data-driven whole disease simulation model for predicting the number of
patients with colorectal cancer by stage and treatment line in
australia. Value Health 27, 1382–1392.
Department of Health and Ageing, 2008. Guidelines
for preparing submissions to the Pharmaceutical Benefits Advisory
Committee: Version 4.3.
Dias, S., Ades, A., Welton, N.J., Jansen, J.P., Sutton, A., 2018.
Network meta-analysis for decision-making, Statistics in practice.
Wiley.
Dias, S., Sutton, A.J., Ades, A.E., Welton, N.J., 2013a. Evidence
synthesis for decision making 2: A generalized linear modeling framework
for pairwise and network meta-analysis of randomized controlled trials.
Medical Decision Making 33, 607–17. https://doi.org/10.1177/0272989X12458724
Dias, S., Sutton, A.J., Welton, N.J., Ades, A.E., 2013b. Evidence
synthesis for decision making 3: Heterogeneity–subgroups,
meta-regression, bias, and bias-adjustment. Medical Decision Making 33,
618–40. https://doi.org/10.1177/0272989X13485157
Dias, S., Welton, N.J., Sutton, A., Ades, A., 2011 (last updated
September 2016). NICE DSU technical support document 2: A generalised
linear modelling framework for pairwise and network meta-analysis of
randomised controlled trials. Report by the Decision Support Unit.
Dias, S., Welton, N.J., Sutton, A.J., Caldwell, D.M., Lu, G., Ades,
A.E., 2013c. Evidence synthesis for decision making 4: Inconsistency in
networks of evidence based on randomized controlled trials. Medical
Decision Making 33, 641–56. https://doi.org/10.1177/0272989X12455847
Diaz-Ordaz, K., Kenward, M., Cohen, A., Coleman, C., Eldridge, S.,
2014a. Are missing data adequately handled in
cluster randomised trials? A systematic review and guidelines.
Clinical Trials 11, 590–600.
Diaz-Ordaz, K., Kenward, M.G., Grieve, R., 2014b. Handling missing values in cost effectiveness analyses
that use data from cluster randomized trials. Journal of
the Royal Statistical Society. Series A (Statistics in Society)
457–474.
Dilla, T., Möller, J., O’Donohoe, P., Álvarez, M., Sacristán, J.A.,
Happich, M., Tockhorn, A., 2014. Long-acting olanzapine versus
long-acting risperidone for schizophrenia in spain - a
cost-effectiveness comparison. BMC Psychiatry 14, 298.
Dolan, P., 1997. Modeling Valuations for
EuroQol Health States: Medical
Care 35, 1095–1108. https://doi.org/10.1097/00005650-199711000-00002
Donegan, S., Williamson, P., D’Alessandro, U., Garner, P., Tudur Smith,
C., 2013. Combining individual patient data and aggregate data in mixed
treatment comparison meta-analysis: Individual patient data may be
beneficial if only for a subset of trials. Statistics in Medicine 32,
914–930. https://doi.org/10.1002/sim.5584
Drummond, M., Sculpher, M.J., K, C., G, S., Torrance G, 2015. Methods for the Economic Evaluation of Health Care
Programmes (Oxford Medical Publications), 4th ed. Oxford
University Press (OUP).
Dziak, J.J., Coffman, D.L., Lanza, S.T., Li, R., Jermiin, L.S., 2019.
Sensitivity and specificity of information criteria. Briefings in
Bioinformatics 21, 553–565. https://doi.org/10.1093/bib/bbz016
Efron, B., Tibshirani, R.J., 1993. An introduction to the bootstrap.
Efthimiou, O., White, I.R., 2020. The dark side of the force:
Multiplicity issues in network meta-analysis and how to address them.
Research Synthesis Methods 11, 105–122. https://doi.org/10.1002/jrsm.1377
Elwenspoek, M.M.C., Thom, H., Sheppard, A.L., Keeney, E., O’Donnell, R.,
Jackson, J., Roadevin, C., Dawson, S., Lane, D., Stubbs, J., Everitt,
H., Watson, J.C., Hay, A.D., Gillett, P., Robins, G., Jones, H.E.,
Mallett, S., Whiting, P.F., 2022. Defining the
optimum strategy for identifying adults and children with coeliac
disease: systematic review and economic modelling. Health
Technology Assessment 26, vii–164. https://doi.org/10.3310/ZUCE8371
Ethgen, O., Standaert, B., 2012. Population- versus
cohort-based modelling approaches. PharmacoEconomics 30, 171–81.
https://doi.org/10.2165/11593050-000000000-00000
EUnetHTA, 2014. Methods for health economic
evaluations: A guideline based on current practices in Europe - second
draft.
Faria, R., Gomes, M., Epstein, D., White, I.R., 2014. A guide to handling missing data in cost-effectiveness
analysis conducted within randomised controlled trials.
PharmacoEconomics 32, 1157–1170.
Faria, R., Hernandez Alava, M., Manca, A., Wailoo, A.J., 2015. Technical Support Document
17: The use of observational data to inform estimates of treatment
effectiveness in technology appraisal: Methods for comparative
individual patient data. NICE Decision Support Unit,
Sheffield, UK.
Felli, J., Hazen, G., 1998. Sensitivity analysis
and the expected value of perfect information. Medical Decision
Making 18, 95–109.
Fiocco, M., Putter, H., Houwelingen, H.C. van, 2008. Reduced-rank
proportional hazards regression and simulation-based prediction for
multi-state models. Stat Med 27, 4340–58. https://doi.org/10.1002/sim.3305
Frank, A., Beck, J.R., Sonnenberg, F.A., Beck, J.R., 1993. Markov Models in Medical Decision Making: A Practical
Guide. Medical Decision Making 13, 322–338. https://doi.org/10.1177/0272989X9301300409
Freeman, S.C., Carpenter, J.R., 2017. Bayesian one-step IPD network
meta-analysis of time-to-event data using royston-parmar models.
Research Synthesis Methods 8, 451–464. https://doi.org/10.1002/jrsm.1253
Freeman, S.C., Cooper, N.J., Sutton, A.J., Crowther, M.J., Carpenter,
J.R., Hawkins, N., 2022. Challenges of modelling approaches for network
meta-analysis of time-to-event outcomes in the presence of
non-proportional hazards to aid decision making: Application to a
melanoma network. Statistical Methods in Medical Research 31, 839–861.
https://doi.org/10.1177/09622802211070253
Gabrio, A., Daniels, M.J., Baio, G., 2020. A
Bayesian parametric approach to handle missing longitudinal outcome data
in trial-based health economic evaluations. Journal of the
Royal Statistical Society: Series A (Statistics in Society) 183,
607–629.
Gabrio, A., Hunter, R., Mason, A.J., Baio, G., 2021. Joint longitudinal models for dealing with missing at
random data in trial-based economic evaluations. Value in Health
24, 699–706.
Gabrio, A., Mason, A.J., Baio, G., 2019. A full
Bayesian model to handle structural ones and missingness in economic
evaluations from individual-level data. Statistics in Medicine
38, 1399–1420.
Gabrio, A., Mason, A.J., Baio, G., 2017. Handling
missing data in within-trial cost-effectiveness analysis: a review with
future recommendations. PharmacoEconomics-open 1, 79–97.
G-BA, 2011. The benefit assessment of medicinal products in accordance
with the german social code, book five (SGB v), section 35a
https://www.g-ba.de/english/benefitassessment/ (accessed 28-mar-2024).
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin,
D.B., 2013. Bayesian data analysis. Chapman;
Hall/CRC, Boca Raton, FL, US.
Gelman, A., Hill, J., 2007. Data analysis using
regression and hierarchical/multilevel models.
Gestel, A. van, Severens, J.L., Webers, C.A.B., Beckers, H.J.M.,
Jansonius, N.M., Schouten, J.S.A.G., 2010. Modeling Complex
Treatment Strategies: Construction and Validation of a Discrete Event
Simulation Model for Glaucoma. Value in Health 13, 358–367. https://doi.org/10.1111/j.1524-4733.2009.00678.x
Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches
to the calculation of posterior moments, in: Bernardo, J.M., Berger, J.,
Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics. Oxford
University Press, Oxford, U.K.
Gomes, M., Diaz-Ordaz, K., Grieve, R., Kenward, M.G., 2013. Multiple imputation methods for handling missing data in
cost-effectiveness analyses that use data from hierarchical studies: an
application to cluster randomized trials. Medical Decision
Making 33, 1051–1063.
Gomes, M., Kenward, M.G., Grieve, R., Carpenter, J., 2020. Estimating treatment effects under untestable assumptions
with nonignorable missing data. Statistics in Medicine 39,
1658–1674.
Gomes, M., Ng, E.S.-W., Grieve, R., Nixon, R., Carpenter, J., Thompson,
S.G., 2012. Developing appropriate methods for
cost-effectiveness analysis of cluster randomized trials. Medical
Decision Making 32, 350–361.
Grafféo, N., Latouche, A., Le Tourneau, C., Chevret, S., 2019.
ipcwswitch: An R package for inverse probability of censoring weighting
with an application to switches in clinical trials. Computers in Biology
and Medicine 111, 103339. https://doi.org/10.1016/j.compbiomed.2019.103339
Graves, N., Walker, D., Raine, R., Hutchings, A., Roberts, J.A., 2002.
Cost data for individual patients included in
clinical studies: no amount of statistical analysis can compensate for
inadequate costing methods. Health economics 11, 735–739.
Gray, A.M., Clarke, P.M., Wolstenholme, J.L., Wordsworth, S., 2011.
Applied methods of cost-effectiveness analysis in healthcare. Oxford
University Press.
Green, N., Lamrock, F., Naylor, N., Williams, J., Briggs, A., 2023.
Health Economic Evaluation Using Markov Models in R
for Microsoft Excel Users: A Tutorial. PharmacoEconomics 41,
5–19. https://doi.org/10.1007/s40273-022-01199-7
Gregory, J., Smith, S., Birnie, R., 2023. MAIC: Package to
perform matched-adjusted indirect comparisons. https://doi.org/10.5281/zenodo.6624151
Griffin, E., Hyde, C., Long, L., Varley-Campbell, J., Coelho, H.,
Robinson, S., Snowsill, T., 2020. Lung cancer screening by
low-dose computed tomography: a cost-effectiveness analysis of
alternative programmes in the UK using a newly developed natural
history-based economic model. Diagnostic and Prognostic Research
4. https://doi.org/10.1186/s41512-020-00087-y
Griffiths, J.D., Jones, M., Read, M.S., Williams, J.E., 2010. A
simulation model of bed-occupancy in a critical care unit.
Journal of Simulation 4, 52–59. https://doi.org/10.1057/jos.2009.22
Guideline, N., 2024. Asthma:
Diagnosis, monitoring and chronic asthma management. London:
National Institute for Health and Care Excellence.
Guyot, P., Ades, A., Ouwens, M.J., Welton, N.J., 2012. Enhanced
secondary analysis of survival data: reconstructing the data from
published Kaplan-Meier survival curves. BMC Medical Research Methodology
12. https://doi.org/10.1186/1471-2288-12-9
Haacker, M., Hallett, T.B., Atun, R., 2020. On discount rates for
economic evaluations in global health. Health Policy Plan 35, 107–114.
https://doi.org/10.1093/heapol/czz127
Haji Ali Afzali, H., Karnon, J., 2015. Exploring Structural
Uncertainty in Model-Based Economic Evaluations.
PharmacoEconomics 33, 435–443. https://doi.org/10.1007/s40273-015-0256-0
Harari, O., Soltanifar, M., Cappelleri, J.C., Verhoek, A., Ouwens, M.,
Daly, C., Heeg, B., 2023. Network meta‐interpolation: Effect
modification adjustment in network meta‐analysis using subgroup
analyses. Research Synthesis Methods 14, 211–233. https://doi.org/10.1002/jrsm.1608
Hariton, E., Locascio, J.J., 2018. Randomised controlled trials - the
gold standard for effectiveness research: Study design: Randomised
controlled trials. BJOG 125, 1716. https://doi.org/10.1111/1471-0528.15199
Härkänen, T., Maljanen, T., Lindfors, O., Virtala, E., Knekt, P., 2013.
Confounding and missing data in cost-effectiveness
analysis: comparing different methods. Health economics review 3,
1–11.
Hart, R., Burns, D., Ramaekers, B., Ren, S., Gladwell, D., Sullivan, W.,
Davison, N., Saunders, O., Sly, I., Cain, T., al., et, 2020. R and Shiny for Cost-Effectiveness Analyses: Why and
When? A Hypothetical Case Study. PharmacoEconomics 38, 765–776.
https://doi.org/10.1007/s40273-020-00903-9
Hart, R., Hassan, F., Alulis, S., Patterson, K.W., Barthelmes, J.N.,
Boer, J.H., Lee, D., 2024. Modelling treatment sequences in immunology:
Optimizing patient outcomes. Advances in Therapy 41, 2010–2027.
Hatswell, A.J., Baio, G., Berlin, J.A., Irs, A., Freemantle, N., 2016.
Regulatory approval of pharmaceuticals without a randomised controlled
study: Analysis of EMA and FDA approvals
19992014. BMJ Open 6, e011666. https://doi.org/10.1136/bmjopen-2016-011666
Hatswell, A.J., Bullement, A., Briggs, A., Paulden, M., Stevenson, M.D.,
2018. Probabilistic Sensitivity Analysis in
Cost-Effectiveness Models: Determining Model Convergence in Cohort
Models. PharmacoEconomics 36, 1421–1426. https://doi.org/10.1007/s40273-018-0697-3
Hawkins, N., Sculpher, M., Epstein, D., 2005. Cost-effectiveness
analysis of treatments for chronic disease: Using r to incorporate time
dependency of treatment response. Med Decis Making 25, 511–9. https://doi.org/10.1177/0272989X05280562
Heath, A., Baio, G., 2018. Calculating the Expected
Value of Sample Information Using Efficient Nested Monte Carlo: A
Tutorial. Value in Health 21, 1299–1304.
Heath, A., Kunst, N., Jackson, C., 2024. Value of
Information for Healthcare Decision-Making. CRC Press.
Heath, A., Manolopoulou, I., Baio, G., 2019. Estimating the Expected Value of Sample Information
across Different Sample Sizes Using Moment Matching and Nonlinear
Regression. Medical Decision Making 39, 346–358.
Heath, A., Manolopoulou, I., Baio, G., 2018. Efficient Monte Carlo Estimation of the Expected Value of
Sample Information Using Moment Matching. Medical Decision Making
38, 163–173.
Heath, A., Manolopoulou, I., Baio, G., 2017. A
Review of Methods for Analysis of the Expected Value of
Information. Medical Decision Making 37, 747–758.
Heath, A., Manolopoulou, I., Baio, G., 2016. Estimating the expected value of partial perfect
information in health economic evaluations using integrated nested
Laplace approximation. Statistics in Medicine 35, 4264–4280.
Heath, A., Strong, M., Glynn, D., Kunst, N., Welton, N.J.,
Goldhaber-Fiebert, J.D., 2022. Simulating study
data to support expected value of sample information calculations: a
tutorial. Medical Decision Making 42, 143–155.
Heidelberger, P., Welch, P.D., 1983. Simulation run length control in
the presence of an initial transient. Operations Research 31, 1109–1144.
Hess, S. original by K., Gentleman, R. port by R., 2021. Muhaz: Hazard function
estimation in survival analysis.
Higgins, J.P., Thompson, S.G., 2002. Quantifying heterogeneity in a
meta-analysis. Statistics in Medicine 21, 1539–58. https://doi.org/10.1002/sim.1186
Higgins, J.P., Thompson, S.G., Deeks, J.J., Altman, D.G., 2003.
Measuring inconsistency in meta-analyses. BMJ 327, 557–60. https://doi.org/10.1136/bmj.327.7414.557
HIQA, 2019. Guidelines for the economic evaluation of health
technologies in ireland health information and quality authority.
Hoaglin, D.C., Hawkins, N., Jansen, J.P., Scott, D.A., Itzler, R.,
Cappelleri, J.C., Boersma, C., Thompson, D., Larholt, K.M., Diaz, M.,
Barrett, A., 2011. Conducting indirect-treatment-comparison and
network-meta-analysis studies: Report of the ISPOR task force on
indirect treatment comparisons good research practices: Part 2. Value
Health 14, 429–37. https://doi.org/10.1016/j.jval.2011.01.011
Howard, R.A., 1960. Dynamic programming and Markov processes.
Technology Press of Massachusetts Institute of Technology.
HTA CG, 2024. Practical guideline for quantitative evidence synthesis:
Direct and indirect comparisons (adopted on 8 march 2024). Member State
Coordination Group on Health Technology Assessment.
hta-pharma, 2024. Maicplus: Matching
adjusted indirect comparison.
Hunink, M.G.M., Weinstein, M.C., Wittenberg, E., 2014. Decision Making in Health and Medicine,
Cambridge medicine. Cambridge University Press.
Hunter, E., Kelleher, J.D., 2021. Using a hybrid agent-based and
equation based model to test school closure policies during a measles
outbreak. BMC Public Health 21. https://doi.org/10.1186/s12889-021-10513-5
Hutton, B., Salanti, G., Caldwell, D.M., Chaimani, A., Schmid, C.H.,
Cameron, C., Ioannidis, J.P.A., Straus, S., Thorlund, K., Jansen, J.P.,
Mulrow, C., Catalá-López, F., Gøtzsche, P.C., Dickersin, K., Boutron,
I., Altman, D.G., Moher, D., 2015. The PRISMA Extension Statement for
Reporting of Systematic Reviews Incorporating Network Meta-analyses of
Health Care Interventions: Checklist and Explanations. Annals of
Internal Medicine 162, 777–784. https://doi.org/10.7326/m14-2385
Ishak, K.J., Proskorovsky, I., Benedict, A., 2015. Simulation and
matching-based approaches for indirect comparison of treatments.
Pharmacoeconomics 33, 537–549. https://doi.org/10.1007/s40273-015-0271-1
Izadi, N., Koohi, F., Safarpour, M., Naseri, P., Rahimi, S., Khodakarim,
S., 2020. Estimating the cure
proportion of colorectal cancer and related factors after surgery in
patients using parametric cure models. Gastroenterology, Hepatology
and Bed Bench 13, 125–132.
Jackman, S., 2009. Bayesian analysis for the social
sciences. John Wiley & Sons.
Jackson, C., 2023. Survextrap: A package for flexible and transparent
survival extrapolation. BMC Medical Research Methodology
23, 282.
Jackson, C., 2016. flexsurv: A Platform for
Parametric Survival Modeling in R. Journal of Statistical
Software 70. https://doi.org/10.18637/jss.v070.i08
Jackson, C., 2011. Multi-State Models for Panel
Data: The msm Package for R. Journal of Statistical Software 38,
1–28. https://doi.org/10.18637/jss.v038.i08
Jackson, C., Best, N., Richardson, S., 2008. Hierarchical related
regression for combining aggregate and individual data in studies of
socio-economic disease risk factors. Journal of the Royal Statistical
Society Series A (Statistics in Society) 171, 159–78.
Jackson, C., Best, N., Richardson, S., 2006. Improving ecological
inference using individual-level data. Statistics in Medicine 25,
2136–59. https://doi.org/10.1002/sim.2370
Jackson, C., Bojke, L., Thompson, S.G., Claxton, K., Sharples, L.D.,
2011. A framework for addressing structural uncertainty in decision
models. Medical Decision Making 31, 662–674. https://doi.org/10.1177/0272989X11406986
Jackson, C., Stevens, J., Ren, S., Latimer, N., Bojke, L., Manca, A.,
Sharples, L., 2016. Extrapolating Survival from Randomized Trials Using
External Data: A Review of Methods. Medical Decision Making 37, 377–390.
https://doi.org/10.1177/0272989x16639900
Jackson, D., Barrett, J.K., Rice, S., White, I.R., Higgins, J.P., 2014.
A design-by-treatment interaction model for network meta-analysis with
random inconsistency effects. Statistics in Medicine 33, 3639–54. https://doi.org/10.1002/sim.6188
Jackson, D., Rhodes, K., Ouwens, M., 2020. Alternative weighting schemes
when performing matching‐adjusted indirect comparisons. Research
Synthesis Methods 12, 333–346. https://doi.org/10.1002/jrsm.1466
Jackson, D., White, I.R., Riley, R.D., 2012. Quantifying the impact of
between-study heterogeneity in multivariate meta-analyses. Statistics in
Medicine 31, 3805–20. https://doi.org/10.1002/sim.5453
Jalal, H., Alarid-Escudero, F., 2018. A Gaussian
Approximation Approach for Value of Information Analysis. Medical
Decision Making 38, 174–188.
Jalal, H., Goldhaber-Fiebert, J., Kuntz, K., 2015. Computing expected value of partial sample information
from probabilistic sensitivity analysis using linear regression
metamodeling. Medical Decision Making 35, 584–595.
Jalal, H., Pechlivanoglou, P., Krijkamp, E., Alarid-Escudero, F., Enns,
E., Hunink, M.G.M., 2017. An Overview of R in Health Decision
Sciences. Medical Decision Making 37, 735–746. https://doi.org/10.1177/0272989x16686559
Jansen, J.P., 2012. Network meta-analysis of individual and aggregate
level data. Research Synthesis Methods 3, 177–90. https://doi.org/10.1002/jrsm.1048
Jansen, J.P., 2011. Network meta-analysis of survival data with
fractional polynomials. BMC Medical Research Methodology 11, 61. https://doi.org/10.1186/1471-2288-11-61
Jansen, J.P., Fleurence, R., Devine, B., Itzler, R., Barrett, A.,
Hawkins, N., Lee, K., Boersma, C., Annemans, L., Cappelleri, J.C., 2011.
Interpreting indirect treatment comparisons and network meta-analysis
for health-care decision making: Report of the ISPOR task force on
indirect treatment comparisons good research practices: Part 1. Value
Health 14, 417–28. https://doi.org/10.1016/j.jval.2011.04.002
Jansen, J.P., Incerti, D., Linthicum, M.T., 2019. Developing Open-Source Models for the US Health System:
Practical Experiences and Challenges to Date with the Open-Source Value
Project. PharmacoEconomics 37, 1313–1320. https://doi.org/10.1007/s40273-019-00827-z
Jansen, J.P., Incerti, D., Trikalinos, T.A., 2023. Multi-state network
meta-analysis of progression and survival data. Statistics in Medicine
42, 3371–3391. https://doi.org/10.1002/sim.9810
Jensen, R.K., Clements, M., Gjaerde, L.K., Jakobsen, L.H., 2022. Fitting parametric cure models in R using the packages
cuRe and rstpm2. Computational Methods Programs in Biomedicine
226, 107125. https://doi.org/10.1016/j.cmpb.2022.107125
Jun, J.B., Jacobson, S.H., Swisher, J.R., 1999. Application of
discrete-event simulation in health care clinics: A survey.
Journal of the Operational Research Society 50, 109–123. https://doi.org/10.1057/palgrave.jors.2600669
Kalbfleisch, J.D., Lawless, J., 1985. The analysis of panel data under a
markov assumption. Journal of the American Statistical Association 80,
863–871. https://doi.org/https://doi.org/10.2307/2288545
Kalbfleisch, J.D., Prentice, R.L., 2002. The statistical analysis of failure time data,
2nd ed, Wiley series in probability and statistics. J. Wiley, Hoboken,
N.J.
Kanters, S., Ford, N., Druyts, E., Thorlund, K., Mills, E.J., Bansback,
N., 2016. Use of network meta-analysis in clinical guidelines. Bull
World Health Organ 94, 782–784. https://doi.org/10.2471/BLT.16.174326
Karnon, J., Haji Ali Afzali, H., 2014. When to Use Discrete Event
Simulation (DES) for the Economic Evaluation of Health Technologies? A
Review and Critique of the Costs and Benefits of DES.
PharmacoEconomics 32, 547–558. https://doi.org/10.1007/s40273-014-0147-9
Karnon, J., Stahl, J., Brennan, A., Caro, J.J., Mar, J., Möller, J.,
2012. Modeling using Discrete Event Simulation: A Report of the
ISPOR-SMDM Modeling Good Research Practices Task Force-4. Value
in Health 15, 821–827. https://doi.org/10.1016/j.jval.2012.04.013
Kassambara, A., Kosinski, M., Biecek, P., 2021. Survminer: Drawing
survival curves using ’ggplot2’.
Kay, R., 1986. A markov model for analysing cancer markers and disease
states in survival studies. Biometrics 42, 855–865. https://doi.org/https://doi.org/10.2307/2530699
Keynes, J.M., 1923. A tract on monetary
reform. London, Macmillan.
Kleijburg, A., Lokkerbol, J., Regeer, E.J., Geerling, B., Evers, S.,
Kroon, H., Wijnen, B., 2022. Designing and testing
of a health-economic Markov model to assess the cost-effectiveness of
treatments for Bipolar disorder: TiBipoMod. Front Psychiatry 13,
1030989. https://doi.org/10.3389/fpsyt.2022.1030989
Krahn, U., Binder, H., König, J., 2013. A graphical tool for locating
inconsistency in network meta-analyses. BMC medical research methodology
13, 1–18.
Krijkamp, E.M., Alarid-Escudero, F., Enns, E.A., Jalal, H.J., Hunink,
M.G.M., Pechlivanoglou, P., 2018. Microsimulation
Modeling for Health Decision Sciences Using R: A Tutorial.
Medical Decision Making 38, 400–422. https://doi.org/10.1177/0272989X18754513
Krijkamp, E.M., Alarid-Escudero, F., Enns, E.A., Pechlivanoglou, P.,
Hunink, M.G.M., Yang, A., Jalal, H.J., 2020. A
Multidimensional Array Representation of State-Transition Model
Dynamics. Medical Decision Making 40, 242–248. https://doi.org/10.1177/0272989X19893973
Kruschke, J., 2014. Doing Bayesian data analysis: A
tutorial with R, JAGS, and Stan. Academic Press, San Diego, CA,
US.
Lambert, P.C., Billingham, L.J., Cooper, N.J., Sutton, A.J., Abrams,
K.R., 2008. Estimating the cost-effectiveness of an
intervention in a clinical trial when partial cost information is
available: a Bayesian approach. Health economics 17, 67–81.
Lambert, P.C., Sutton, A.J., Abrams, K.R., Jones, D.R., 2002. A
comparison of summary patient-level covariates in meta-regression with
individual patient data meta-analysis. Journal of Clinical Epidemiology
55, 86–94. https://doi.org/10.1016/S0895-4356(01)00414-0
Lambert, P.C., Thompson, J.R., Weston, C.L., Dickman, P.W., 2007.
Estimating and modeling the cure fraction in population-based cancer
survival analysis. Biostatistics 8, 576–594.
Latimer, N.R., 2013. Survival analysis for economic evaluations
alongside clinical trials–extrapolation with patient-level data:
Inconsistencies, limitations, and a practical guide. Med. Decis. Making
33, 743–754.
Latimer, N.R., Rutherford, M.J., 2024. Mixture and non-mixture cure
models for health technology assessment: What you need to know.
Pharmacoeconomics 42, 1073–1090.
Law, W.D.K., Averill M., Kelton., W.D., 2007. Simulation modeling
and analysis.
Lawson, B., Leemis, L.M., 2015. Discrete-event simulation using r, in:
2015 Winter Simulation Conference (WSC). IEEE, pp. 3502–3513.
Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., Bretagnolle, V.,
2014. Spatial leave-one-out
cross-validation for variable selection in the presence of
spatial autocorrelation. Global Ecology and Biogeography 23, 811–820. https://doi.org/10.1111/geb.12161
Leahy, J., Thom, H., Jansen, J.P., Gray, E., O’Leary, A., White, A.,
Walsh, C., 2019. Incorporating single-arm evidence into a network
meta-analysis using aggregate level matching: Assessing the impact.
Statistics in Medicine. https://doi.org/10.1002/sim.8139
Lee, D., Burns, D., Wilson, E., 2024. NICE’s pathways pilot: Pursuing
good decision making in difficult circumstances. PharmacoEconomics-open
1–5.
Leemis, L., McQueston, J., 2008. Univariate
Distribution Relationships. The American Statistician 62,
45–53.
Leucht, S., Chaimani, A., Cipriani, A.S., Davis, J.M., Furukawa, T.A.,
Salanti, G., 2016. Network meta-analyses should be the highest level of
evidence in treatment guidelines. European Archive of Psychiatry
Clinical Neuroscience 266, 477–80. https://doi.org/10.1007/s00406-016-0715-4
Leurent, B., Gomes, M., Carpenter, J.R., 2018a. Missing data in trial-based cost-effectiveness analysis:
An incomplete journey. Health economics 27, 1024–1040.
Leurent, B., Gomes, M., Cro, S., Wiles, N., Carpenter, J.R., 2020. Reference-based multiple imputation for missing data
sensitivity analyses in trial-based cost-effectiveness analysis.
Health economics 29, 171–184.
Leurent, B., Gomes, M., Faria, R., Morris, S., Grieve, R., Carpenter,
J.R., 2018b. Sensitivity analysis for not-at-random
missing data in trial-based cost-effectiveness analysis: a
tutorial. PharmacoEconomics 36, 889–901.
Lillian Yau, E.G., 2022. maicChecks: Assessing the numerical feasibility
for conducting a matching-adjusted indirect comparison
(MAIC).
Little, R.J., 1994. A class of pattern-mixture
models for normal incomplete data. Biometrika 81, 471–483.
Little, R.J., D’Agostino, R., Cohen, M.L., Dickersin, K., Emerson, S.S.,
Farrar, J.T., Frangakis, C., Hogan, J.W., Molenberghs, G., Murphy, S.A.,
others, 2012. The prevention and treatment of
missing data in clinical trials. New England Journal of Medicine
367, 1355–1360.
Little, R.J., Rubin, D.B., 2019. Statistical analysis with missing data.
John Wiley & Sons.
Liu, Xing-Rong, Pawitan, Y., Clements, M., 2018. Parametric and
penalized generalized survival models. Stat. Methods Med. Res. 27,
1531–1546.
Liu, X.R., Pawitan, Y., Clements, M., 2018. Parametric and penalized
generalized survival models 27, 1531–1546.
Loomes, G., McKenzie, L., 1989. The use of QALYs in
health care decision making. Social Science and Medicine 28,
299–308.
Lu, G., Ades, A., 2009. Modeling between-trial variance structure in
mixed treatment comparisons. Biostatistics 10, 792–805. https://doi.org/10.1093/biostatistics/kxp032
Lu, G., Ades, A.E., Sutton, A.J., Cooper, N.J., Briggs, A.H., Caldwell,
D.M., 2007. Meta-analysis of mixed treatment comparisons at multiple
follow-up times. Statistics in Medicine 26, 3681–3699.
Lumley, T., 2002. Network meta-analysis for indirect treatment
comparisons. Statistics in Medicine 21, 2313–24. https://doi.org/10.1002/sim.1201
Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D., 2013. The
BUGS book : A practical introduction to bayesian analysis, Texts in
statistical science. CRC Press, Boca Raton ; London.
M., B., T., H.J.P., V., H.L., R., R.H., 2017. Basics of meta-analysis:
I2 is not an absolute measure of heterogeneity. Research Synthesis
Methods 8, 5–18.
Maciel, D., Jansen, J.P., Klijn, S.L., Towle, K., Dhanda, D., Malcolm,
B., Cope, S., 2024. Implementing multilevel network meta-regression for
time-to-event outcomes: A case study in relapsed refractory multiple
myeloma. Value in Health. https://doi.org/10.1016/j.jval.2024.04.017
Mainzer, R., Apajee, J., Nguyen, C.D., Carlin, J.B., Lee, K.J., 2021.
A comparison of multiple imputation strategies for
handling missing data in multi-item scales: Guidance for longitudinal
studies. Statistics in Medicine.
Manca, A., Hawkins, N., Sculpher, M.J., 2005. Estimating mean QALYs in trial-based cost-effectiveness
analysis: the importance of controlling for baseline utility.
Health economics 14, 487–496.
Manca, A., Palmer, S., 2005. Handling missing data
in patient-level cost-effectiveness analysis alongside randomised
clinical trials. Applied health economics and health policy 4,
65–75.
Mason, A.J., Gomes, M., Carpenter, J., Grieve, R., 2021. Flexible Bayesian longitudinal models for
cost-effectiveness analyses with informative missing data. Health
economics.
Mason, A.J., Gomes, M., Grieve, R., Carpenter, J.R., 2018. A Bayesian framework for health economic evaluation in
studies with missing data. Health economics 27, 1670–1683.
Mason, A.J., Gomes, M., Grieve, R., Ulug, P., Powell, J.T., Carpenter,
J., 2017. Development of a practical approach to
expert elicitation for randomised controlled trials with missing health
outcomes: application to the IMPROVE trial. Clinical
Trials 14, 357–367.
Matloff, N., 2017. DES: Discrete Event
Simulation.
McCullagh, P., Nelder, J.A., 1989. Generalised linear models. 2nd ed.
Chapman & Hall, London.
McNamara, S., Schneider, P.P., Love-Koh, J., Doran, T., Gutacker, N.,
2023. Quality-adjusted life expectancy norms for the english population.
Value in Health 26, 163–169.
Meira-Machado, L., Una-Alvarez, J. de, Cadarso-Suarez, C., Andersen,
P.K., 2009. Multi-state models for the analysis of
time-to-event data. Statistical Methods in Medical Research 18,
195–222. https://doi.org/10.1177/0962280208092301
Menn, P., Holle, R., 2009. Comparing Three Software Tools for
Implementing Markov Models for Health Economic Evaluations.
PharmacoEconomics 27, 745–753. https://doi.org/10.2165/11313760-000000000-00000
Menzel, P.T., 2021. How Should Willingness-to-Pay
Values of Quality-Adjusted Life-Years Be Updated and According to
Whom? AMA Journal of Ethics 23, E601–606. https://doi.org/10.1001/amajethics.2021.601
Menzies, N., 2016. An efficient estimator for the
expected value of sample information. Medical Decision Making 36,
308–320.
Minelli, C., Baio, G., 2015. Value of information:
a tool to improve research prioritization and reduce waste.
Moertel, C.G., Fleming, T.R., Macdonald, J.S., Haller, D.G., Laurie,
J.A., Goodman, P.J., Ungerleider, J.S., Emerson, W.A., Tormey, D.C.,
Glick, J.H., Veeder, M.H., Mailliard, J.A., 1990. Levamisole and
Fluorouracil for Adjuvant Therapy of Resected Colon Carcinoma. New
England Journal of Medicine 322, 352–358. https://doi.org/10.1056/nejm199002083220602
Moertel, C.G., Fleming, T.R., Macdonald, J.S., Haller, D.G., Laurie,
J.A., Tangen, C.M., Ungerleider, J.S., Emerson, W.A., Tormey, D.C.,
Glick, J.H., Veeder, M.H., Mailliard, J.A., 1995. Fluorouracil plus levamisole as effective adjuvant
therapy after resection of stage III colon carcinoma: a final
report. Annals of Internal Medicine 122, 321–6. https://doi.org/10.7326/0003-4819-122-5-199503010-00001
Mohd, A.R., Ghani, M.K., Awang, R.R., Su Min, J.O., Dimon, M.Z., 2010.
Dermacyn irrigation in reducing infection of a median sternotomy wound.
Heart Surgery Forum 13, E228–E232.
Molenberghs, G., Fitzmaurice, G., Kenward, M.G., Tsiatis, A., Verbeke,
G., 2014. Handbook of missing data
methodology. CRC Press.
Mood, A.M., Graybill, F.A., Boes, D.C., 1974. Introduction to the Theory of Statistics 3rd
edition.
Naimark, D., Mishra, S., Barrett, K., Khan, Y.A., Mac, S., Ximenes, R.,
Sander, B., 2021. Simulation-Based Estimation of SARS-CoV-2
Infections Associated With School Closures and Community-Based
Nonpharmaceutical Interventions in Ontario, Canada. JAMA Network
Open 4, e213793. https://doi.org/10.1001/jamanetworkopen.2021.3793
Naimark, D.M.J., Bott, M., Krahn, M., 2008. The
half-cycle correction explained: Two alternative pedagogical
approaches. Medical Decision Making 28, 706–712. https://doi.org/10.1177/0272989X08315241
Ng, E.S., Diaz-Ordaz, K., Grieve, R., Nixon, R.M., Thompson, S.G.,
Carpenter, J.R., 2016. Multilevel models for
cost-effectiveness analyses that use cluster randomised trial data: an
approach to model choice. Statistical methods in medical research
25, 2036–2052.
NICE, 2013. Guide to the methods of technology
appraisal 2013. NICE Guideline (PMG9).
Niihara, S.;.R., Y.; Majumdar, 2017. Phase
3 study of l-glutamine in sickle cell disease: Analyses of time to first
and second crisis and average cumulative recurrent events. Blood.
Conference: 59th Annual Meeting of the American Society of Hematology,
ASH 130.
Noble, S.M., Hollingworth, W., Tilling, K., 2012. Missing data in trial-based cost-effectiveness analysis:
The current state of play. Health economics 21, 187–200.
O’Hagan, A., 2019. Expert knowledge elicitation:
subjective but scientific. The American Statistician
73, 69–81.
O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garthwaite, P.H.,
Jenkinson, D.J., Oakley, J.E., Rakow, T., 2006. Uncertain judgements: eliciting experts’
probabilities.
O’Hagan, A., Stevens, J.W., 2001. A framework for
cost-effectiveness analysis from clinical trial data. Health
Economics 10, 303–315.
Oostenbrink, J.B., Al, M.J., 2005. The analysis of
incomplete cost data due to dropout. Health economics 14,
763–776.
Oostenbrink, J.B., Al, M.J., Rutten-van Mölken, M.P., 2003. Methods to analyse cost data of patients who withdraw in
a clinical trial setting. PharmacoEconomics 21, 1103–1112.
Ouwens, M.J.N.M., Philips, Z., Jansen, J.P., 2010. Network
meta-analysis of parametric survival curves. Research
Synthesis Methods 1, 258–271. https://doi.org/10.1002/jrsm.25
Pahuta, M.A., Werier, J., Wai, E.K., Patchell, R.A., Coyle, D., 2019. A
technique for approximating transition rates from published survival
analyses. Cost Eff Resour Alloc 17, 12. https://doi.org/10.1186/s12962-019-0182-7
Park, J.E., Campbell, H., Towle, K., Yuan, Y., Jansen, J.P., Phillippo,
D.M., Cope, S., 2024. Unanchored population-adjusted indirect comparison
methods for time-to-event outcomes using inverse odds weighting,
regression adjustment, and doubly robust methods with either individual
patient or aggregate data. Value in Health 27, 278–286. https://doi.org/10.1016/j.jval.2023.11.011
Patel, N., Beeken, R.J., Leurent, B., Omar, R.Z., Nazareth, I., Morris,
S., 2018. Cost-effectiveness of habit-based advice
for weight control versus usual care in general practice in the Ten Top
Tips (10TT) trial: economic evaluation based on a randomised controlled
trial. BMJ open 8, e017511.
Pedder, H., Dias, S., Bennetts, M., Boucher, M., Welton, N.J., 2021.
Joining the dots: Linking disconnected networks of evidence using
dose-response model-based network meta-analysis. Medical Decision Making
41, 194–208. https://doi.org/10.1177/0272989X20983315
Perencevich, E.N., Sands, K.E., Cosgrove, S.E., Guadagnoli, E., Meara,
E., Platt, R., 2003. Health and economic impact of surgical site
infections diagnosed after hospital discharge. Emerg Infect Dis 9,
196–203. https://doi.org/10.3201/eid0902.020232
Peterson, C.M., Medchill, M., Gordon, D.S., Chard, H.L., 1990. Cesarean
prophylaxis: A comparison of cefamandole and cefazolin by both
intravenous and lavage routes, and risk factors associated with
endometritis. Obstetrics and Gynecology 75, 179–182.
Philips, Z., Claxton, K., Palmer, S., 2008. The half-life of truth: What
are appropriate time horizons for research decisions? Medical Decision
Making 28, 287–299.
Phillippo, D.M., 2024. Multinma: Network meta-analysis of individual and
aggregate data in stan. https://doi.org/10.5281/zenodo.3904454
Phillippo, D.M., 2019. Calibration of treatment effects in network
meta-analysis using individual patient data (PhD thesis). University of
Bristol.
Phillippo, D.M., Ades, A., Dias, S., Palmer, S., Abrams, K., Welton, N.,
2016a. NICE DSU technical support document 18: Methods for
population-adjusted indirect comparisons in submissions to NICE. Report
by the Decision Support Unit.
Phillippo, D.M., Ades, AE, Dias, S., Palmer, S., Abrams, K., Welton, N.,
2016b. Technical Support
Document 18: Methods for population-adjusted indirect comparisons
in submission to NICE. NICE Decision Support
Unit, Sheffield, UK.
Phillippo, D.M., Ades, A.E., Dias, S., Palmer, S., Abrams, K.R., Welton,
N.J., 2018. Methods for population-adjusted indirect comparisons in
health technology appraisal. Medical Decision Making 38, 200–211. https://doi.org/10.1177/0272989x17725740
Phillippo, D.M., Dias, S., Ades, A.E., Belger, M., Brnabic, A., Saure,
D., Schymura, Y., Welton, N.J., 2023. Validating the assumptions of
population adjustment: Application of multilevel network meta-regression
to a network of treatments for plaque psoriasis. Medical Decision Making
43, 53–67. https://doi.org/10.1177/0272989X221117162
Phillippo, D.M., Dias, S., Ades, A.E., Belger, M., Brnabic, A., Schacht,
A., Saure, D., Kadziola, Z., Welton, N.J., 2020a. Multilevel network
meta-regression for population-adjusted treatment comparisons. Journal
of the Royal Statistical Society: Series A (Statistics in Society) 183,
1189–1210. https://doi.org/10.1111/rssa.12579
Phillippo, D.M., Dias, S., Ades, A.E., Welton, N.J., 2024. Multilevel
network meta-regression for general likelihoods: Synthesis of individual
and aggregate data with applications to survival analysis. arXiv. https://doi.org/10.48550/arXiv.2401.12640
Phillippo, D.M., Dias, S., Ades, A.E., Welton, N.J., 2021. Target
estimands for efficient decision making: Response to comments on
“assessing the performance of population adjustment methods for
anchored indirect comparisons: A simulation study.” Statistics in
Medicine 40, 2759–2763. https://doi.org/10.1002/sim.8965
Phillippo, D.M., Dias, S., Ades, A.E., Welton, N.J., 2020b. Equivalence
of entropy balancing and the method of moments for matching‐adjusted
indirect comparison. Research Synthesis Methods 11, 568–572. https://doi.org/10.1002/jrsm.1416
Phillippo, D.M., Dias, S., Ades, A.E., Welton, N.J., 2020c. Assessing
the performance of population adjustment methods for anchored indirect
comparisons: A simulation study. Statistics in Medicine. https://doi.org/10.1002/sim.8759
Phillippo, D.M., Dias, S., Elsada, A., Ades, A.E., Welton, N.J., 2019.
Population adjustment methods for indirect comparisons: A review of
national institute for health and care excellence technology appraisals.
International Journal of Technology Assessment in Health Care. https://doi.org/10.1017/S0266462319000333
Pichon-Riviere, A., Drummond, M., Palacios, A., Garcia-Marti, S.,
Augustovski, F., 2023a. Determining the efficiency path to universal
health coverage: Cost-effectiveness thresholds for 174 countries based
on growth in life expectancy and health expenditures. Lancet Glob Health
11, e833–e842. https://doi.org/10.1016/S2214-109X(23)00162-6
Pichon-Riviere, A., Drummond, M., Palacios, A., Garcia-Marti, S.,
Augustovski, F., 2023b. Determining the efficiency
path to universal health coverage: cost-effectiveness thresholds for 174
countries based on growth in life expectancy and health
expenditures. Lancet Global Health 11, e833–e842. https://doi.org/10.1016/S2214-109X(23)00162-6
Pieters, Z., Strong, M., Pitzer, V.E., Beutels, P., Bilcke, J., 2020.
A Computationally Efficient Method for Probabilistic Parameter
Threshold Analysis for Health Economic Evaluations. Medical
Decision Making 40, 669–679. https://doi.org/10.1177/0272989x20937253
Plummer, M., 2024. Rjags: Bayesian
graphical models using MCMC.
Plummer, M., 2013. JAGS: Just another gibbs sampler.
http://mcmc-jags.sourceforge.net.
Plummer, M., others, 2003. JAGS: A program for
analysis of Bayesian graphical models using Gibbs sampling, in:
Proceedings of the 3rd International Workshop on Distributed Statistical
Computing. Vienna, Austria., pp. 1–10.
Pokharel, R., Lin, Y.-S., McFerran, E., O’Mahony, J.F., 2023. A systematic review of cost-effectiveness analyses of
colorectal cancer screening in Europe: have studies included optimal
screening intensities? Applied Health Economics and Health Policy
21, 701–717.
Prentice, R., 1975. Discrimination among some parametric models.
Biometrika 62, 607–614.
Putter, H., Fiocco, M., Geskus, R.B., 2007. Tutorial in biostatistics:
Competing risks and multi-state models. Stat Med 26, 2389–430. https://doi.org/10.1002/sim.2712
Rabin, R., de Charro, F., 2001. EQ-SD: a measure of
health status from the EuroQol Group. Annals of
Medicine 33, 337–343.
Raftery, A.E., Lewis, S.M., 1992. One long run with
diagnostics: Implementation strategies for Markov chain Monte
Carlo. Statistical Science 7, 493–497.
Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., Solenberger, P.,
others, 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models.
Survey methodology 27, 85–96.
Raiffa, H., Schlaifer, H., 1961. Applied Statistical Decision
Theory. Harvard University Press, Boston, MA.
Remiro-Azócar, A., 2022a. Target estimands for population‐adjusted
indirect comparisons. Statistics in Medicine 41, 5558–5569. https://doi.org/10.1002/sim.9413
Remiro-Azócar, A., 2022b. Some considerations on target estimands for
health technology assessment. Statistics in Medicine 41, 5592–5596. https://doi.org/10.1002/sim.9566
Remiro-Azócar, A., Heath, A., Baio, G., 2022. Parametric g-computation
for compatible indirect treatment comparisons with limited individual
patient data. Research Synthesis Methods. https://doi.org/10.1002/jrsm.1565
Remiro-Azócar, A., Heath, A., Baio, G., 2021a. Methods for population
adjustment with limited access to individual patient data: A review and
simulation study. Research Synthesis Methods 12, 750–775. https://doi.org/10.1002/jrsm.1511
Remiro-Azócar, A., Heath, A., Baio, G., 2021b. Conflating marginal and
conditional treatment effects: Comments on “assessing the
performance of population adjustment methods for anchored indirect
comparisons: A simulation study.” Statistics in Medicine 40,
2753–2758. https://doi.org/10.1002/sim.8857
Rhodes, K.M., Turner, R.M., White, I.R., Jackson, D., Spiegelhalter, D.,
Higgins, J.P., 2016. Implementing informative priors for heterogeneity
in meta-analysis using meta-regression and pseudo data. Statistics in
Medicine 35, 5495–5511. https://doi.org/10.1002/sim.7090
Riley, R.D., Dias, S., Donegan, S., Tierney, J.F., Stewart, L.A.,
Efthimiou, O., Phillippo, D.M., 2023. Using individual participant data
to improve network meta-analysis projects. BMJ Evidence-Based Medicine
28, 197–203. https://doi.org/10.1136/bmjebm-2022-111931
Riley, R.D., Lambert, P.C., Abo-Zaid, G., 2010. Meta-analysis of
individual participant data: Rationale, conduct, and reporting. British
Medical Journal 340. https://doi.org/10.1136/bmj.c221
Roberts, M., Russell, L.B., Paltiel, A.D., Chambers, M., McEwan, P.,
Krahn, M., 2012. Conceptualizing a model: A report
of the ISPOR-SMDM modeling good research practices task force-2.
Medical Decision Making 32, 678–689. https://doi.org/10.1177/0272989X12454941
Rombach, I., Gray, A.M., Jenkinson, C., Murray, D.W., Rivero-Arias, O.,
2018. Multiple imputation for patient reported
outcome measures in randomised controlled trials: advantages and
disadvantages of imputing at the item, subscale or composite score
level. BMC medical research methodology 18, 1–16.
Rombach, I., Rivero-Arias, O., Gray, A.M., Jenkinson, C., Burke, O.,
2016. The current practice of handling and
reporting missing outcome data in eight widely used PROMs in RCT
publications: a review of the current literature. Quality of Life
Research 25, 1613–1623.
Royston, P., Parmar, M.K., 2013. Restricted mean survival time: An
alternative to the hazard ratio for the design and analysis of
randomized trials with a time-to-event outcome. BMC medical
research methodology 13, 1–15.
RStudio, 2020c. Create
an icon.
RStudio, 2020b. Lesson
3 - add control widgets.
RStudio Team, 2020. RStudio: Integrated Development Environment for
R. RStudio, PBC., Boston, MA.
Rubin, D.B., 2004. Multiple imputation for
nonresponse in surveys. John Wiley & Sons.
Rucker, G., Petropoulou, M., Schwarzer, G., 2020. Network meta-analysis
of multicomponent interventions. Biom J 62, 808–821. https://doi.org/10.1002/bimj.201800167
Rucker, G., Schmitz, S., Schwarzer, G., 2021. Component network
meta-analysis compared to a matching method in a disconnected network: A
case study. Biom J 63, 447–461. https://doi.org/10.1002/bimj.201900339
Russek-Cohen, E., 2022. Discussion of “target estimands for
population‐adjusted indirect comparisons” by antonio
remiro‐azocar. Statistics in Medicine 41, 5573–5576. https://doi.org/10.1002/sim.9533
Sadeghirad, B., Foroutan, F., Zoratti, M.J., Busse, J.W.,
Brignardello-Petersen, R., Guyatt, G., Thabane, L., 2023. Theory and
practice of bayesian and frequentist frameworks for network
meta-analysis. BMJ Evid Based Med 28, 204–209. https://doi.org/10.1136/bmjebm-2022-111928
Salanti, G., Del Giovane, C., Chaimani, A., Caldwell, D.M., Higgins,
J.P., 2014. Evaluating the quality of evidence from a network
meta-analysis. PLoS One 9, e99682. https://doi.org/10.1371/journal.pone.0099682
Saramago, P., Sutton, A.J., Cooper, N.J., Manca, A., 2012. Mixed
treatment comparisons using aggregate and individual participant level
data. Statistics in Medicine 31, 3516–3536. https://doi.org/10.1002/sim.5442
Schafer, J.L., 1997. Analysis of incomplete
multivariate data. CRC press.
Schafer, J.L., Graham, J.W., 2002. Missing data:
our view of the state of the art. Psychological methods 7, 147.
Schiel, A., 2022. Commentary on “target estimands for
population‐adjusted indirect comparisons.” Statistics in Medicine
41, 5570–5572. https://doi.org/10.1002/sim.9517
Serret-Larmande, A., Zenati, B., Dechartres, A., Lambert, J., Hajage,
D., 2023. A methodological review of population-adjusted indirect
comparisons reveals inconsistent reporting and suggests publication
bias. Journal of Clinical Epidemiology 163, 1–10. https://doi.org/10.1016/j.jclinepi.2023.09.004
Siebert, U., Alagoz, O., Bayoumi, A.M., Jahn, B., Owens, D.K., Cohen,
D.J., Kuntz, K.M., 2012. State-Transition
Modelling: A report of the ISPOR-SMDM Modelling Good Research Practices
Task Force-3. Value in Health 15, 812–820.
Signorovitch, J.E., Sikirica, V., Erder, M.H., Xie, J., Lu, M.,
Hodgkins, P.S., Betts, K.A., Wu, E.Q., 2012. Matching-adjusted indirect
comparisons: A new tool for timely comparative effectiveness research.
Value in Health 15, 940–947.
Signorovitch, J.E., Wu, E.Q., Yu, A.P., Gerrits, C.M., Kantor, E., Bao,
Y.J., Gupta, S.R., Mulani, P.M., 2010. Comparative effectiveness without
head-to-head trials a method for matching-adjusted indirect comparisons
applied to psoriasis treatment with adalimumab or etanercept.
Pharmacoeconomics 28, 935–945. https://doi.org/10.2165/11538370-000000000-00000
Sikirica, V., Findling, R.L., Signorovitch, J., Erder, M.H., Dammerman,
R., Hodgkins, P., Lu, M., Xie, J., Wu, E.Q., 2013. Comparative efficacy
of guanfacine extended release versus atomoxetine for the treatment of
attention-deficit/hyperactivity disorder in children and adolescents:
Applying matching-adjusted indirect comparison methodology. CNS Drugs
27, 943–53. https://doi.org/10.1007/s40263-013-0102-x
Simons, C.L., Rivero-Arias, O., Yu, L.-M., Simon, J., 2015. Multiple imputation to deal with missing EQ-5D-3L data:
Should we impute individual domains or the actual index? Quality
of Life Research 24, 805–815.
Simpson, K.N., Strassburger, A., Jones, W.J., Dietz, B., Rajagopalan,
R., 2009. Comparison of Markov Model and Discrete-Event Simulation
Techniques for HIV. PharmacoEconomics 27, 159–165. https://doi.org/10.2165/00019053-200927020-00006
Smith, R., Schneider, P., 2020. Making health
economic models Shiny: A tutorial. Wellcome Open Research 5, 69.
https://doi.org/10.12688/wellcomeopenres.15807.1
Soares, M.O., Castro, L.C., 2012. Continuous Time
Simulation and Discretized Models for Cost-Effectiveness
Analysis. PharmacoEconomics 30, 1101–17. https://doi.org/https://doi.org/10.2165/11599380-000000000-00000
Spiegelhalter, D., Best, N.G., 2003. Bayesian
approaches to multiple sources of evidence and uncertainty in complex
cost-effectiveness modelling. Statistics in Medicine 22,
3687–3709. https://doi.org/10.1002/sim.1586
Spiegelhalter, D., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002.
Bayesian measures of model complexity and
fit. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 64, 583–639.
Spiegelhalter, D., R., A.K., P, M.J., 2004. Bayesian approaches to
clinical trials and health-care evaluation.
Spieker, A.J., 2022. Comments on the debate between marginal and
conditional estimands. Statistics in Medicine 41, 5589–5591. https://doi.org/10.1002/sim.9558
Srivastava, T., Strong, M., Stevenson, M.D., Dodd, P.J., 2020. Improving
cycle corrections in discrete time markov models : A gaussian quadrature
approach. Improving cycle corrections in discrete time markov models: A
gaussian quadrature approach. medRxiv. https://doi.org/10.1101/2020.07.27.20162651
Stahl, J.E., Rattner, D., Wiklund, R., Lester, J., Beinfeld, M.,
Gazelle, G.S., 2004. Reorganizing the System of Care Surrounding
Laparoscopic Surgery: A Cost-Effectiveness Analysis Using Discrete-Event
Simulation. Medical Decision Making 24, 461–471. https://doi.org/10.1177/0272989x04268951
Standfield, L., Comans, T., Scuffham, P., 2014. MARKOV MODELING
AND DISCRETE EVENT SIMULATION IN HEALTH CARE: A SYSTEMATIC
COMPARISON. International Journal of Technology Assessment
in Health Care 30, 165–172. https://doi.org/10.1017/s0266462314000117
Steuten, L., Wetering, G. van de, Groothuis-Oudshoorn, K., Retèl, V.,
2013. A Systematic and Critical Review of the
Evolving Methods and Applications of Value of Information in Academia
and Practice. PharmacoEconomics 31, 25–48. https://doi.org/10.1007/s40273-012-0008-3
Stevens, J.W., Fletcher, C., Downey, G., Sutton, A., 2018. A review of
methods for comparing treatments evaluated in studies that form
disconnected networks of evidence. Research Synthesis Methods 9,
148–162. https://doi.org/10.1002/jrsm.1278
Stinnett, A., Mullahy, J., 1998. Net health
benefits a new framework for the analysis of uncertainty in
cost-effectiveness analysis. Medical Decision Making 18, S68–S80.
Strober, B., Brnabic, A., Schacht, A., Mallbris, L., See, K., Warren,
R.B., Nast, A., 2016. Indirect comparison of ixekizumab and secukinumab
using matched-adjusted indirect comparisons.
Strong, M., Breeze, P., Thomas, C., Brennan, A., 2014a. SAVI - Sheffield Accelerated Value of Information,
Release version 1.013 (2014-12-11). The University of
Sheffield.
Strong, M., Oakley, J., Brennan, A., 2014b. Estimating Multiparameter Partial Expected Value of
Perfect Information from a Probabilistic Sensitivity Analysis Sample A
Nonparametric Regression Approach. Medical Decision Making 34,
311–326.
Strong, M., Oakley, J., Brennan, A., Breeze, P., 2015. Estimating the Expected Value of Sample Information Using
the Probabilistic Sensitivity Analysis Sample A Fast Nonparametric
Regression-Based Method. Medical Decision Making 35, 570–583.
Strong, M., Oakley, J.E., Chilcott, J., 2012. Managing structural
uncertainty in health economic decision models: A discrepancy approach.
Journal of the Royal Statistical Society Series C 61, 25–45. https://doi.org/10.1111/j.1467-9876.2011.01014.x
Sutton, A.J., Kendrick, D., Coupland, C.A.C., 2008. Meta-analysis of
individual- and aggregate-level data. Statistics in Medicine 27,
651–669. https://doi.org/10.1002/sim.2916
Team, S.D., 2023. Stan modeling language
users guide and reference manual, version 2.32.
Thaçi, D., Körber, A., Kiedrowski, R., Bachhuber, T., Melzer, N.,
Kasparek, T., Duetting, E., Kraehn-Senftleben, G., Amon, U., Augustin,
M., 2019. Secukinumab is effective in treatment of moderate-to-severe
plaque psoriasis: Real-life effectiveness and safety from the
PROSPECT study. Journal of the European Academy of
Dermatology and Venereology 34, 310–318. https://doi.org/10.1111/jdv.15962
Thokala, P., Goodacre, S., Ward, M., Penn-Ashman, J., Perkins, G., 2015.
Cost-effectiveness of out-of-hospital continuous
positive airway pressure for acute respiratory failure. Annals of
emergency medicine 65, 556–563.
Thom, H.H., Jackson, C., Commenges, D., Sharples, L.D., 2015. State selection in Markov models for panel data with
application to psoriatic arthritis. Statistics in Medicine 34,
2456–75. https://doi.org/10.1002/sim.6460
Thom, H., Jackson, C., Welton, N.J., Sharples, L., 2017. Using parameter
constraints to choose state structures in cost-effectiveness modelling.
PharmacoEconomics. https://doi.org/10.1007/s40273-017-0501-9
Thom, H., Jansen, J., Shafrin, J., Zhao, L., Joseph, G., Cheng, H.Y.,
Gupta, S., Shah, N., 2020a. Crizanlizumab and comparators for adults
with sickle cell disease: A systematic review and network meta-analysis.
BMJ Open 10, e034147. https://doi.org/10.1136/bmjopen-2019-034147
Thom, H., Leahy, J., Jansen, J.P., 2022. Network meta-analysis on
disconnected evidence networks when only aggregate data are available:
Modified methods to include disconnected trials and single-arm studies
while minimizing bias. Medical Decision Making 42, 906–922. https://doi.org/10.1177/0272989x221097081
Thom, H., Norman, G., Welton, N.J., Crosbie, E.J., Blazeby, J.,
Dumville, J.C., 2020b. Intra-cavity lavage and wound irrigation for
prevention of surgical site infection: Systematic review and network
meta-analysis. Surg Infect (Larchmt). https://doi.org/10.1089/sur.2019.318
Thompson, S.G., Nixon, R.M., 2005. How sensitive
are cost-effectiveness analyses to choice of parametric
distributions? Medical Decision Making 25, 416–423.
Trew, G., Pistofidis, G., Pados, G., Lower, A., Mettler, L., Wallwiener,
D., et, a.l., 2011. Gynaecological endoscopic evaluation of 4. Human
Reproduction 26, 2015–2027.
Ucar, I., Smeets, B., Azcorra, A., 2019. simmer:
Discrete-Event Simulation for R 90. https://doi.org/10.18637/jss.v090.i02
Ucar, I., Smeets, B., Azcorra, A., 2017. Simmer: Discrete-event
simulation for r. arXiv preprint arXiv:1705.09746.
Van Asselt, A.D., Van Mastrigt, G.A., Dirksen, C.D., Arntz, A.,
Severens, J.L., Kessels, A.G., 2009. How to deal
with cost differences at baseline. PharmacoEconomics 27, 519–528.
Van Buuren, S., 2007. Multiple imputation of
discrete and continuous data by fully conditional specification.
Statistical methods in medical research 16, 219–242.
van Rosmalen, J., Toy, M., O’Mahony, J.F., 2013. A
mathematical approach for evaluating Markov models in continuous time
without discrete-event simulation. Medical Decision Making 33,
767–79. https://doi.org/10.1177/0272989X13487947
Viechtbauer, W., 2010. Conducting meta-analyses in R with
the metafor package. Journal of Statistical
Software 36, 1–48. https://doi.org/10.18637/jss.v036.i03
Von Hippel, P.T., 2020. How many imputations do you
need? A two-stage calculation using a quadratic rule.
Sociological Methods & Research 49, 699–718.
Warren, R.B., Brnabic, A., Saure, D., Langley, R.G., See, K., Wu, J.J.,
Schacht, A., Mallbris, L., Nast, A., 2018. Matching-adjusted indirect
comparison of efficacy in patients with moderate-to-severe plaque
psoriasis treated with ixekizumab vs. Secukinumab. British Journal of
Dermatology 178, 1064–1071. https://doi.org/10.1111/bjd.16140
Welton, N.J., McAleenan, A., Thom, H.H.Z., Davies, P., Hollingworth, W.,
Higgins, J.P.T., Okoli, G., Sterne, J.A.C., Feder, G., Eaton, D.,
Hingorani, A., Fawsitt, C., Lobban, T., Bryden, P., Richards, A., Sofat,
R., 2017. Screening strategies for atrial
fibrillation: A systematic review and cost-effectiveness
analysis. Health Technology Assessment 21, vii–235. https://doi.org/10.3310/hta21290
Welton, N.J., Soares, M.O., Palmer, S., Ades, A.E., Harrison, D.,
Shankar-Hari, M., Rowan, K.M., 2015. Accounting for heterogeneity in
relative treatment effects for use in cost-effectiveness models and
value-of-information analyses. Medical Decision Making 35, 608–621. https://doi.org/10.1177/0272989x15570113
Welton, N.J., Sutton, A.J., Cooper, N.J., Abrams, K.R., Ades, A.E.,
2012. Evidence synthesis for decision making in healthcare. John Wiley;
Sons.
White, I.R., Royston, P., Wood, A.M., 2011. Multiple imputation using chained equations: issues and
guidance for practice. Statistics in Medicine 30,
377–399.
Wickham, H., 2019. Advanced
R. "CRC Press".
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.
Wickham, H., Çetinkaya-Rundel, M., Grolemund, G., 2023. R for data
science. O’Reilly Media, Inc.
Willan, A., Briggs, A., 2006. The statistical
analysis of cost-effectiveness data. John Wiley; Sons,
Chichester, UK.
Willan, A., Pinto, E., 2005. The value of
information and optimal clinical trial design. Statistics in
Medicine 24, 1791–1806.
Williams, C., Lewsey, J.D., Briggs, A.H., Mackay, D.F., 2017. Cost-effectiveness Analysis in R Using a Multi-state
Modeling Survival Analysis Framework: A Tutorial. Medical
Decision Making 37, 340–352. https://doi.org/10.1177/0272989X16651869
Wilson, E.C.F., 2021. Methodological Note:
Reporting Deterministic versus Probabilistic Results of Markov,
Partitioned Survival and Other Non-Linear Models. Applied Health
Economics and Health Policy 19, 789–795. https://doi.org/10.1007/s40258-021-00664-2
Woods, B.S., Hawkins, N., Scott, D.A., 2010. Network meta-analysis on
the log-hazard scale, combining count and hazard ratio statistics
accounting for multi-arm trials: A tutorial. BMC Medical Research
Methodology 10, 54. https://doi.org/10.1186/1471-2288-10-54
Woods, B., Sideris, E., Palmer, S., Latimer, N., Soares, M., 2017. NICE
DSU technical support document 19: Partitioned survival analysis for
decision modelling in health care: A critical review. Report by the
Decision Support Unit.
Woods, B.S., Sideris, E., Palmer, S., Latimer, N., Soares, M., 2020.
Partitioned survival and state transition models for healthcare decision
making in oncology: Where are we now? Value Health 23, 1613–1621. https://doi.org/10.1016/j.jval.2020.08.2094
Wreede, LC., Fiocco, M., Putter, H., 2011. Mstate: An r package for the
analysis of competing risks and multi-state models. Journal of
Statistical Software 38.
Wullink, G., Van Houdenhoven, M., Hans, E.W., Oostrum, J.M. van, Lans,
M. van der, Kazemier, G., 2007. Closing Emergency Operating Rooms
Improves Efficiency. Journal of Medical Systems 31, 543–546. https://doi.org/10.1007/s10916-007-9096-6
Xenakis, J.G., Kinter, E.T., Ishak, K.J., Ward, A.J., Marton, J.P.,
Willke, R.J., Davies, S., Caro, J.J., 2011. A discrete-event simulation
of smoking-cessation strategies based on varenicline pivotal trial data.
Pharmacoeconomics 29, 497–510.
Xie, Y., Allaire, J., Grolemund, G., 2018. R Markdown: The
Definitive Guide.
Xie, Y., Cheng, J., Tan, X., 2021. DT: A
Wrapper of the JavaScript Library ’DataTables’.
Yang, Y., Abel, L., Buchanan, J., Fanshawe, T., Shinkins, B., 2019.
Use of Decision Modelling in Economic Evaluations
of Diagnostic Tests: An Appraisal and Review of Health Technology
Assessments in the UK. PharmacoEconomics - Open 3, 281–291. https://doi.org/10.1007/s41669-018-0109-9
Young, R., 2022. Maic:
Matching-adjusted indirect comparison.
Zabor, E.C., Kaizer, A.M., Hobbs, B.P., 2020. Randomized controlled
trials. Chest 158, S79–S87. https://doi.org/10.1016/j.chest.2020.03.013
Zeileis, A., Köll, S., Graham, N., 2020. Various versatile variances: An
object-oriented implementation of clustered covariances in r. Journal of
Statistical Software 95. https://doi.org/10.18637/jss.v095.i01
Zhang, J.Z., Rios, J.D., Pechlivanoglou, T., Yang, A., Zhang, Q., Deris,
D., Cromwell, I., Pechlivanoglou, P., 2024. SurvdigitizeR: an algorithm
for automated survival curve digitization. BMC Medical Research
Methodology 24. https://doi.org/10.1186/s12874-024-02273-8
Zhang, X., 2018. Application of discrete event simulation in
health care: a systematic review. BMC Health Services Research
18. https://doi.org/10.1186/s12913-018-3456-4
ZiN, 2024. Guideline for economic evaluation in
healthcare.
Zubizarreta, J.R., 2015. Stable weights that balance covariates for
estimation with incomplete outcome data. Journal of the American
Statistical Association 110, 910–922. https://doi.org/10.1080/01621459.2015.1023805